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(We’ll have to first describe our terms!)

◮ (word/Gromov) hyperbolic groups,

◮ and their ends;

◮ subshifts of finite type on a group,

◮ and the strongly aperiodic ones
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The number of ends of a graph is the number of components as
we delete larger and larger balls.

The number of ends of a graph of a group does not depend on
which presentation we begin with and so is an invariant of the
group itself.

Quick examples: ...
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Subshifts of finite type

On a group G , with an alphabet A, a subshift is a G invariant,
closed subset of AG (with the natural action (x · g)(h) = x(gh); a
subshift of finite type is specified by a finite collection of finite
forbidden (or allowed) patterns.

A non-empty subshift is weakly aperiodic iff no element of it has a
stabilizer with finite index in G .

A non-empty subshift is strongly aperiodic iff every element has
trivial stabilizer.

On Z2 the properties are equivalent, but not so in general.

(We have similar definitions for matching rule tiling spaces (in the
plane, Hn, etc), but there are some subtle differences.)
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Whether or not a group admits a strongly aperiodic SFT is a
quasi-isometry invariant under mild conditions (Cohen ’17), and a
commensurability invariant (Carroll-Penland). Examples of groups
known to admit a strongly aperiodic SFTs include:

◮ Z2 (Berger ’64 or ’66);

◮ More generally, polycyclic groups (Jeandel)

◮ Z2 ⋊ H, where H has decidable word problem (Barbieri and
Sablik). This is a very broad collection of groups which
includes Sol3 ∼= Z2 ⋊ Z.

◮ Uniform co-compact lattices in simple Lie groups of rank at
least 2 (Mozes ’97).

◮ Z× Thompson’s group T (Jeandel)

◮ Very recently, the direct product of any three infinite finitely
generated groups with decidable word problem; the
Grigorchuck group is an example (Barbieri).

(Note that each of these examples contain a non-trivial product of
infinite groups.)
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(An aside)

Cohen (’16) showed that groups with more than one end cannot
admit a strongly aperiodic SFT — Z is an easy to understand
example that already gives the idea —

and Jeandel showed that finitely generated (*) groups with an
undecidable word problem cannot either.

These are the only known obstructions and we naturally ask:

Question: Does there exist a one ended finitely presented group

with decidable word problem that does not admit a strongly

aperiodic SFT?
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Hyperbolic groups

A group is hyperbolic (aka word-hyp. or Gromov
hyp.) iff for some δ ≥ 0, every triangle is δ-slim:

Hyperbolic groups were introduced by Gromov in 1987,
simultaneously generalizing many classical examples, such as

◮ free groups (2 or ∞ ends)

◮ groups acting discretely on Hn, such as surface groups (1 end
if co-compact),

◮ even finite groups (0 ends)

Notably no hyperbolic group has a subgroup that is the non-trivial
product of infinite groups (particularly Z2).
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Among their many celebrated properties, hyperbolic groups

◮ are in some sense ‘generic’ among finitely presented groups;

◮ have well-defined asympototic exponential growth rate;

◮ have (linear time!) decidable word problem;

For us, the key properties are that hyperbolic groups

◮ have well defined “horospherical shellings” and

◮ are “shortlex geodesic”.

◮ And in particular, admit weakly aperiodic SFTs, we might call
“shortlex shellings” (Gromov ’87, Coornaert and
Papadopoulous ’91,’93.)
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Sketch of the proof

Theorem. A hyperbolic group admits a strongly aperiodic subshift

of finite type if and only if it has at most one end.

The primary result is

Prop. A one-ended hyperbolic group admits an SFT such that no

element is stabilized by Z.

which suffices since:

By Cohen (’16) groups with more than one end cannot admit a
strongly aperiodic subshift of finite type,

groups with no ends are finite, and trivially admit a strongly
aperiodic subshift of finite type,

and every group with finitely many torsion elements up to
conjugacy (eg hyp gps) admits an SFT s.t. no elt. has finite
stabilizer... which can be combined with the proposition to
produce a strongly aperiodic SFT.



Incommeasurability

Consider the “orbit tiling” in H2 corresponding to the symbolic
substitutions

0 → 00

and
a → aab, b → ab
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(Cohen, GS ’15) Orbit tilings can be enforced by matching rules:

etc.

In fact, the results of GS (strongly aperiodic tiles in H2) and
Aubrun-Kari (weakly aperiodic tiles in the Baumslag-Solitar
groups) can be understood as arising from the orbit tilings
corresponding to the pair 0 → 00, 0 → 000.
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The construction here is similar, though much more technical! Let
λ be the asympotic exponential growth rate of the group; we
associate a measure µ with the shortlex states of the group so that

∑
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The construction

The construction here is similar, though much more technical! Let
λ be the asympotic exponential growth rate of the group; we
associate a measure µ with the shortlex states of the group so that

∑

P(b)=a

µ(b) = λµ(a)

(This is essentially, but not quite, the leading left Perron-Frobenius
eigenvector — the transition matrix need not be irreducible.)

We choose any q ∈ {2, 3} for which logq λ /∈ Q.



Populated shellings

We will overlay a structure onto the shortlex shelling SFT:

In a populated shelling, each “village” g ∈ G has ⌊µ(g)⌋ or
⌈µ(g)⌉ “villagers”; there is some global radius R , and some
sequence (δi ) ∈ {⌊logq λ⌋, ⌈logq λ⌉}

Z, so that the villagers in layer
i are in δi -to-one association with the villagers in layer i +1, within
distance R .

This is a (possibly empty) SFT, as we can locally check the validity
of an alleged populated shelling.
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Populated shellings are strongly aperiodic

If they exist, populated shellings are strongly aperiodic, much as in
the orbit tiling case. Consider any stabilizer S of a populated
shelling x . S must preserve the underlying shortlex shelling, and so
must act on the sequence (δi ).

But as in Kari onwards, this sequence is necessarily non-periodic,
so S fixes the shortlex layers.

On the other hand, a non-trivial S cannot fix any single layer, for
the orbit of a point under such an S defines a quasigeodesic, in a
shortlex layer, but quasigeodesics must remain close to geodesics,
which diverge arbitrarily far from such a layer.
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This turns out to be pretty technical, but we explicitly construct
them. (The credit is David’s.)



Populated shellings exist

This turns out to be pretty technical, but we explicitly construct
them. (The credit is David’s.)

We construct “divergence graphs” on the shortlex layers which
behave nicely under the shelling map.



Populated shellings exist

We construct a kind of flow on these graphs, which allows us to
distribute errors in a controlled manner.



Populated shellings exist

We construct R very carefully to ensure that there are enough
villagers in each layer to apply the Hall marriage theorem, allowing
us to associate villagers with their children.


