Embedding computations in tilings

Andrei Romashchenko

26 September 2017, ENS de Lyon

30

Two central notions in this talk:

N

Two central notions in this talk:

> SFT (subshift of finite type)

N

Two central notions in this talk:

» SFT (subshift of finite type) on Z? over an alphabet ¥:

N

Two central notions in this talk:

» SFT (subshift of finite type) on Z? over an alphabet ¥:

the set Sr of all configurations f : Z? — ¥ that avoid
forbidden patterns from some finite family F

N

Two central notions in this talk:

» SFT (subshift of finite type) on Z? over an alphabet ¥:

the set Sr of all configurations f : Z? — ¥ that avoid

forbidden patterns from some finite family F

» COMPUTATION (algorithm):

N

Two central notions in this talk:

» SFT (subshift of finite type) on Z? over an alphabet ¥:

the set Sr of all configurations f : Z? — ¥ that avoid

forbidden patterns from some finite family F

» COMPUTATION (algorithm):
Turing machine with one or many bi-infinite tapes

N

Embedding computation in a subshift...

Embedding computation in a subshift... Why?

Embedding computation in a subshift... Why?

A. undecidability results:

Embedding computation in a subshift... Why?

A. undecidability results:

properties of a properties of an SFT with
Turing machine an embedded computation

(i)

Embedding computation in a subshift... Why?

A. undecidability results:

properties of a properties of an SFT with
Turing machine an embedded computation

(i)

(i) many properties of a TM are algorithmically undecidable

Embedding computation in a subshift... Why?

A. undecidability results:

properties of a properties of an SFT with
Turing machine an embedded computation

(i)
(i) many properties of a TM are algorithmically undecidable

(i) + (ii) = properties of an SFT are algorithmically undecidable

Embedding computation in a subshift... Why?

A. undecidability results:

properties of a properties of an SFT with
Turing machine an embedded computation

(i)
(ii) many properties of a TM are algorithmically undecidable

(i) + (ii) = properties of an SFT are algorithmically undecidable

B. combinatorial /topological /dynamical properties of SFT:

Embedding computation in a subshift... Why?

A. undecidability results:

properties of a properties of an SFT with
Turing machine an embedded computation

(i)
(ii) many properties of a TM are algorithmically undecidable

(i) + (ii) = properties of an SFT are algorithmically undecidable

B. combinatorial /topological /dynamical properties of SFT:

» proofs of positive results require constructions

Embedding computation in a subshift... Why?

A. undecidability results:

() properties of a properties of an SFT with
Turing machine an embedded computation

(ii) many properties of a TM are algorithmically undecidable
(i) + (ii) = properties of an SFT are algorithmically undecidable
B. combinatorial /topological /dynamical properties of SFT:

» proofs of positive results require constructions

> algorithm is a construction par excellence

Embedding computation in a subshift... Why?

A. undecidability results:

properties of a properties of an SFT with
Turing machine an embedded computation

(i)
(ii) many properties of a TM are algorithmically undecidable

(i) + (ii) = properties of an SFT are algorithmically undecidable

B. combinatorial /topological /dynamical properties of SFT:

» proofs of positive results require constructions

» algorithm is a construction par excellence

30

SFT

ITUring machines

SFT

| Turing machines
l

hierarchical structures

4/30

SFT with a hierarchical structure with an embedded computation:

SFT with a hierarchical structure with an embedded computation:

> Berger/Robinson's approach

SFT with a hierarchical structure with an embedded computation:

> Berger/Robinson's approach

> Self-simulating tilings

SFT with a hierarchical structure with an embedded computation:

> Berger/Robinson's approach

> Self-simulating tilings (goes back to self-simulating automata,
P. Gécs and even earlier J. von Neumann)

SFT with a hierarchical structure with an embedded computation:

> Berger/Robinson's approach

> Self-simulating tilings (goes back to self-simulating automata,
P. Gécs and even earlier J. von Neumann)

/30

Special type of SFT: Wang tilings

30

Special type of SFT: Wang tilings

> Color: an element of a finiteset C = {-,-,,-,-, ,-}

30

Special type of SFT: Wang tilings

> Color: an element of a finiteset C = {-,-,,-,-, ,-}

» Wang Tile: a unit square with colored sides.

Special type of SFT: Wang tilings
> Color: an element of a finiteset C = {-,-,,-,-, ,-}

» Wang Tile: a unit square with colored sides.
i.e, an element of C*, eg., |_|

Special type of SFT: Wang tilings
> Color: an element of a finiteset C = {-,-,,-,-, ,-}

» Wang Tile: a unit square with colored sides.
i.e, an element of C*, eg., |_|

» Tile set: a set 7 ¢ C*

30

Special type of SFT: Wang tilings
> Color: an element of a finiteset C = {-,-,,-,-, ,-}

» Wang Tile: a unit square with colored sides.
i.e, an element of C*, eg., |_|

» Tile set: a set 7 ¢ C*

» Tiling: a configuration f: Z? — 7, where

every two adjacent tiles share the same color on the common side

Special type of SFT: Wang tilings

» Wang Tile: a unit square with colored sides.

i.e, an element of C*, eg.,
» Tile set: a set 7 ¢ C*

» Tiling: a configuration f: Z? — 7, where
every two adjacent tiles share the same color on the common side,

e.g.,

/30

Aperiodic tilings

30

Aperiodic tilings

T € Z? is a period if f(x + T) = f(x) for all x.

30

Aperiodic tilings
T € Z? is a period if f(x + T) = f(x) for all x.

Theorem. [Berger] There exists a non-empty SFT (even a tileset) on Z2
where all configurations are aperiodic.

Aperiodic tilings
T € Z? is a period if f(x + T) = f(x) for all x.

Theorem. [Berger] There exists a non-empty SFT (even a tileset) on Z2
where all configurations are aperiodic.

A construction of an aperiodic tile set:

Aperiodic tilings
T € Z? is a period if f(x + T) = f(x) for all x.

Theorem. [Berger] There exists a non-empty SFT (even a tileset) on Z2
where all configurations are aperiodic.

A construction of an aperiodic tile set:

» define self-similar tile sets

Aperiodic tilings
T € Z? is a period if f(x + T) = f(x) for all x.

Theorem. [Berger] There exists a non-empty SFT (even a tileset) on Z2
where all configurations are aperiodic.

A construction of an aperiodic tile set:

» define self-similar tile sets

» observe that every self-similar tile set is aperiodic

Aperiodic tilings
T € Z? is a period if f(x + T) = f(x) for all x.

Theorem. [Berger] There exists a non-empty SFT (even a tileset) on Z2
where all configurations are aperiodic.

A construction of an aperiodic tile set:

> define self-similar tile sets
» observe that every self-similar tile set is aperiodic

» construct some self-similar tile set

Macro-tile:

N

Macrg-color

Macro-color

Macro-color

NN

acrt£—col Dr

an N x N square made of matching 7-tiles

30

Fix a tile set 7 and an integer N > 1.

Fix a tile set 7 and an integer N > 1.

Definition 1. A 7-macro-tile: an N x N square made of 7-tiles.

Fix a tile set 7 and an integer N > 1.
Definition 1. A 7-macro-tile: an N x N square made of 7-tiles.

Definition 2. A tile set p is simulated by 7: there exists a family of
T-macro-tiles R such that

» R is isomorphic to p, and

> every 7-tiling can be uniquely split by an N x N grid into
macro-tiles from R.

Example.

A tile set p: Trivial tile set (only one color)

Example.

A tile set p: Trivial tile set (only one color)
A tile set 7: A tile set that simulates a trivial tile set p

Example.

A tile set p: Trivial tile set (only one color)
A tile set 7: A tile set that simulates a trivial tile set p

(2,)

(i, +1)

(i,4)

(i +1,7)

10/30

(0,0)

(N —1,0)

(0,N—1)

(0,0)

(0,N —1)

(0,0)

(0,0)

(N —1,0)

Self-similar tile set: a tile set that simulates a set of macrotiles
isomorphic to itself.

Self-similar tile set: a tile set that simulates a set of macrotiles
isomorphic to itself.

Proposition. Self-similar tile set is aperiodic.

Self-similar tile set: a tile set that simulates a set of macrotiles
isomorphic to itself.

Proposition. Self-similar tile set is aperiodic.
Sketch of the proof:

Self-similar tile set: a tile set that simulates a set of macrotiles
isomorphic to itself.

Proposition. Self-similar tile set is aperiodic.
Sketch of the proof:

Self-similar tile set: a tile set that simulates a set of macrotiles
isomorphic to itself.

Proposition. Self-similar tile set is aperiodic.
Sketch of the proof:

14 /30

Simulating a given tile set p by macro-tiles.

Simulating a given tile set p by macro-tiles.
Representation of the tile set p:

Simulating a given tile set p by macro-tiles.
Representation of the tile set p:

» colors of a tileset p — k-bits strings

Simulating a given tile set p by macro-tiles.
Representation of the tile set p:

> colors of a tileset p — k-bits strings
a predicate
> atilesetp = P(x1,x2, X3, Xa)

on 4-tuples of colors

Simulating a given tile set p by macro-tiles.
Representation of the tile set p:

> colors of a tileset p — k-bits strings
a predicate
> atilesetp = P(x1,x2, X3, Xa)

on 4-tuples of colors

a TM that accepts
only 4-tuples of colors
for the p-tiles

The scheme of implementation:

«O» «F>»

it
i
v

DA
16 /30

A more generic construction: universal TM + program

DA
17/30

A more generic construction: universal TM + program

A fixed point: simulating tile set = simulated tile set

DA
17/30

I
WY

18/30

Q>
18/30

o
v

Q>
18/30

o
v

Q>
18/30

o
v

Q>
18/30

o
v

Q>
18/30

o
v

Q>
18/30

o
v

Q>
18/30

o
v

Q>
18/30

program

Q>
18/30

18/30

O

O

O

O

O

=

=

O

O

O

=]

i

=]

=

=

=

=

O

O

O

=]

=]

O

=

=i

=

O

O

=]

=]

=]

O

=

|

=

O

=

=

=

O

O

O

=]

il

O

O

=]

=

=

O

=

=

O

O

O

O

O

=

=

O

=

O

=]

=

O

O

=

=

O

O

&

il o s o
il i A0 B o

N
I8

T

T

I

I

I

&

el e e el e
B i B R i B R

.
—L%M

il W 0 Bl il

il 1 o o i L

i

el Wl a0 Wl e i i

Il

il 0 0 A o i i

I

il M A0 R il

l

L R s L

I

ol St e ol Bl

18 /30

18 /30

516

PPNy

18/30

ol ol el el

Sy

il
N.B. We can variate the zoom factor!

18/30

Theorem. [Ballier—Ollinger]
There exists an aperiodic and minimal SFT.

Theorem. [Ballier—Ollinger]
There exists an aperiodic and minimal SFT.

How to make an aperiodic SFT minimal ?

Theorem. [Ballier—Ollinger]

There exists an aperiodic and minimal SFT.

How to make an aperiodic SFT minimal ?

Ollinger: take Robinson's construction and remove everything that may
appear not infinitely often

our plan: take the fixed-point construction and enforce everything that may
appear at least once

How to get aperiodicity + minimality 7

DA
20/30

How to get aperiodicity + minimality 7

The problematic part is the computation zone...

DA
20/30

Duplicate each 2 x 2 pattern that may appear in the computation zone!

I Universal

P

Turing
machine
program

21/30

Duplicate each 2 x 2 pattern that may appear in the computation zone!

cssoessoooe
| @cosscons
: i
Y ' Universal
: | Turing
‘\\ - machine
o program

Imprisonment for diversity!

21/30

A slot for a 2 x 2 patterns from the computation zone:

(ij+4) (i+1,j+4) (i+2,j+4) (i+3,j+4)
(i, +3) (LG43 [+1,5+3) (+25+3)[(i+27+3) (i+3,+3)[((+3,7+3) (i+4j+3)
(i, +3) (s,t+2) (s+1,t+2) (i+3.j+3)
(i +3) (i+3.5+3)

(i +2) (s.041) (s +2.64+1) (i+4.5+2)
(i,j+2) (i+3,j+2)
i+2) (i+3.5+2)

(i.3+1) (s.t) (s+2,1) (i+4,j+1)

Gi+1) (i+3.5+1)

(Li+1) (s,1) (s+1.4) (i+3,j+1)

(i.4) (G +1) | i+ 1) (i+2.) | (i+2.) (i+3.9) | (i+3.5 (i+4.3)
G.4) (+1.5) (i+2.5) (i+3.4)

Do
22/30

A slot for a 2 x 2 patterns from the computation zone

(i +4) (i+1,5+4) (i+25+4) (i+33+4)
(5+3) (+143)|(+1,7+3) (+25+3)|[(+25+3) (+3,5+3)|(+3.5+3) (+4,j+3)
(i +3) (5,0+2) (5+1,0+2) (i+3.0+3)
(i +3) (i+3,j+3)
(i +2) (s.t+1) (s +2.6+1) (i+4.5+2)
Gi+2) (i+3.5+2)
(i1 +2) (i+30+2)
(i +1) (1) (420 (i+45+1)
(i +1) (+3.5+1)
Gi+1) (s.8) (s+1.)
() G+ | G+

(i+3.5+1)
(i+2.3) | (+2.5) (i+3.) | (i+3. (i+4.3)
(@4) (i+1.5) (i+2.)

(i+3,7)
Grey cells: It seems we sit inside of the computation zone,

we make part of a huge computation!

Do
22/30

A slot for a 2 x 2 patterns from the computation zone:

(irj+4) (i+1,j+4) (i+2,j+1) (i+3.5+4)

(7+3) (143 +17+3) (+2+3)|(+2)+3) (+3,7+3)

(+3,5+3) (i+4,j+3)

(i,j+3) (s,0+2) (s+1,0+2) (i+3.5+3)
(ij+3) (i+3.+3)

(i +2) (s.t+1) (s +2.6+1) (i+4.5+2)

(i,j+2) (i+3,j+2)

i +2) (i+3.5+2)
(i.3+1) (s.t) (s+2,1) (i+4,j+1)
(i,3+1) (i+3,5+1)
(Li+1) (s,1) (s+11) (i+3,j+1)

(i.4) (G +1) | i+ 1) (i+2.) | (i+2.) (i+3,9) | (i+3.4) (i+4.3)
(@4) (i+1.5) (i+2.) (i+3.5)

Grey cells: It seems we sit inside of the computation zone,
we make part of a huge computation!
White cells: Guys, you four are living in a small prison
in the middle of nowhere...

o = = = = 9ace
22/30

Theorem [Hochman—Meyerovitch| Every explicitly defined
number h > 0 is the entropy of some SFT on Z2.

Theorem [Hochman—Meyerovitch| Every explicitly defined
number h > 0 is the entropy of some SFT on Z2.

e.g., there exist SFTs with entropies

Theorem [Hochman—Meyerovitch| Every explicitly defined
number h > 0 is the entropy of some SFT on Z2.

e.g., there exist SFTs with entropies
_ /5-1
h=Y5=

Theorem [Hochman—Meyerovitch| Every explicitly defined
number h > 0 is the entropy of some SFT on Z2.

e.g., there exist SFTs with entropies
h= @ or 6/m2

23 /30

Theorem [Hochman—Meyerovitch| Every explicitly defined
number h > 0 is the entropy of some SFT on Z2.

e.g., there exist SFTs with entropies

hf\/gfl 6/2 — 1
= Y=, 0r 6/7°, or) =i
n=1

23 /30

Theorem [Hochman—Meyerovitch| Every explicitly defined
number h > 0 is the entropy of some SFT on Z2.

e.g., there exist SFTs with entropies
o0

h= 51 or6/n or 21% or J/m+e
n=

23 /30

Theorem [Hochman—Meyerovitch| Every explicitly defined
number h > 0 is the entropy of some SFT on Z2.

e.g., there exist SFTs with entropies
o0

h= 51 or6/n or 21% or /7 + e, etc.
n=

23 /30

Theorem [Hochman—Meyerovitch| Every explicitly defined
number h > 0 is the entropy of some SFT on Z2.

e.g., there exist SFTs with entropies
o0

h= 51 or6/n or 21% or /7 + e, etc.
n=

Any number that can appear in real maths.

23 /30

Theorem [Hochman—Meyerovitch| Every explicitly defined
number h > 0 is the entropy of some SFT on Z2.

e.g., there exist SFTs with entropies
o0

h= 51 or6/n or 21% or /7 + e, etc.
n=

Any number that can appear in real maths. And even slightly more.

23 /30

Theorem [Hochman—Meyerovitch] Every right recursively enumerable
number h > 0 is the entropy of some SFT on Z2.

24 /30

Theorem [Hochman—Meyerovitch] Every right recursively enumerable
number h > 0 is the entropy of some SFT on Z2.

Questions:

Theorem [Hochman—Meyerovitch] Every right recursively enumerable
number h > 0 is the entropy of some SFT on Z2.

Questions:

» Hochman—Meyerovitch: What about transitivity?

Theorem [Hochman—Meyerovitch] Every right recursively enumerable
number h > 0 is the entropy of some SFT on Z2.

Questions:

» Hochman—Meyerovitch: What about transitivity?

> Schraudner: What about some kind of (uniform) mixing?

Theorem. Every right recursively enumerable number h > 0 is the
entropy of some weakly irreducible and transitive SFT on Z2.

25 /30

Theorem. Every right recursively enumerable number h > 0 is the
entropy of some weakly irreducible and transitive SFT on Z2.

Weakly irreducible: every two globally admissible finite patterns can be
combined in one infinite configuration

25 /30

Theorem. Every right recursively enumerable number h > 0 is the
entropy of some weakly irreducible and transitive SFT on Z2.

Weakly irreducible: every two globally admissible finite patterns can be
combined in one infinite configuration (with a bounded distance).

25 /30

Theorem. Every right recursively enumerable number h > 0 is the
entropy of some weakly irreducible and transitive SFT on Z2.

Weakly irreducible: every two globally admissible finite patterns can be
combined in one infinite configuration (with a bounded distance).

Transitive: There exists a configuration that contains all globally
admissible finite patterns.

Sketch of the proof:

Sketch of the proof:

(step 1) construct a tileset 7 such that

Sketch of the proof:
(step 1) construct a tileset 7 such that

> two types of tiles, blue and red

Sketch of the proof:
(step 1) construct a tileset 7 such that
> two types of tiles, blue and red

> guarantee that limsup|[density of red tiles| = h

26 /30

Sketch of the proof:
(step 1) construct a tileset 7 such that
> two types of tiles, blue and red
> guarantee that limsup|[density of red tiles| = h

> guarantee transitivity and weak irreducibility

26 /30

Sketch of the proof:
(step 1) construct a tileset 7 such that
> two types of tiles, blue and red
> guarantee that limsup|[density of red tiles| = h

> guarantee transitivity and weak irreducibility

v

entropy(7) = 0.

26 /30

Sketch of the proof:

(step 1) construct a tileset 7 such that
> two types of tiles, blue and red
> guarantee that limsup|[density of red tiles| = h
> guarantee transitivity and weak irreducibility

> entropy(7) = 0.

(step 2) an SFT 7/ :

26 /30

Sketch of the proof:

(step 1) construct a tileset 7 such that
> two types of tiles, blue and red
> guarantee that limsup|[density of red tiles| = h
> guarantee transitivity and weak irreducibility

> entropy(7) = 0.

(step 2) an SFT 7/ :

» make two copies of each red tile

26 /30

Sketch of the proof:

(step 1) construct a tileset 7 such that
> two types of tiles, blue and red
> guarantee that limsup|[density of red tiles| = h
> guarantee transitivity and weak irreducibility

> entropy(7) = 0.

(step 2) an SFT 7/ :
» make two copies of each red tile

Result:

26 /30

Sketch of the proof:

(step 1) construct a tileset 7 such that
> two types of tiles, blue and red
> guarantee that limsup|[density of red tiles| = h
> guarantee transitivity and weak irreducibility

> entropy(7) = 0.

(step 2) an SFT 7/ :
» make two copies of each red tile
Result:

> entropy(7') = h

26 /30

Sketch of the proof:

(step 1) construct a tileset 7 such that
> two types of tiles, blue and red
> guarantee that limsup|[density of red tiles| = h
> guarantee transitivity and weak irreducibility

> entropy(7) = 0.

(step 2) an SFT 7/ :

» make two copies of each red tile
Result:

> entropy(7') = h

> weak irreducibility: got for free

26 /30

Sketch of the proof:

(step 1) construct a tileset 7 such that
> two types of tiles, blue and red
> guarantee that limsup|[density of red tiles| = h
> guarantee transitivity and weak irreducibility

> entropy(7) = 0.

(step 2) an SFT 7/ :

» make two copies of each red tile
Result:

> entropy(7') = h

> weak irreducibility: got for free

> transitivity: random instantiation of red tiles

26 /30

technical trick: a self-simulating SFT with a growing zoom factor, s.t.

» lim sup[density of red tiles] = h

> transitive and irreducibile

27 /30

technical trick: a self-simulating SFT with a growing zoom factor, s.t.

» lim sup[density of red tiles] = h

> transitive and irreducibile

blue macro-tiles and red macro-tiles:

27 /30

technical trick: a self-simulating SFT with a growing zoom factor, s.t

» lim sup[density of red tiles] = h

» transitive and irreducibile

blue macro-tiles and red macro-tiles:

DA
27/30

technical trick: a self-simulating SFT with a growing zoom factor, s.t
» lim sup[density of red tiles] = h

» transitive and irreducibile

blue macro-tiles and red macro-tiles:

> most ground-level tiles in a blue macro-tile are blue

DA
27/30

technical trick: a self-simulating SFT with a growing zoom factor, s.t
» lim sup[density of red tiles] = h

» transitive and irreducibile

blue macro-tiles and red macro-tiles:

> most ground-level tiles in a blue macro-tile are blue

» most ground-level tiles in a red macro-tile are red

DA
27/30

technical trick: a self-simulating SFT with a growing zoom factor, s.t
» lim sup[density of red tiles] = h

» transitive and irreducibile

blue macro-tiles and red macro-tiles:

> most ground-level tiles in a blue macro-tile are blue

» most ground-level tiles in a red macro-tile are red

[m]

» the fraction red tiles in a red macro-tile approaches the limit

=

DA
27/30

Hierarchical constructions: self-simulating vs Berger/Robinson's

28 /30

Hierarchical constructions: self-simulating vs Berger/Robinson's

self-simulating Robinson’s
tilings construction
undgC|dab|I|ty of the n Berger'66
domino problem
tilings with only noncom- " Hanf-Myers'74

putable points

any effectively closed 1D
subshift is isomorphic to the
subdynamics of a 2D SFT

Durand—-R-Shen

Aubrun-Sablik

similar result for minimal

- ?

subshifts Durand-R .
inisti Kari, Papasoglu,
iitlgzn?y deterministic | Lokbarile »
¢ Gloannec, Ollinger

pairwise different black Westrick)

squares in the white ocean

Hierarchical structures but no universal computation:

29 /30

Hierarchical structures but no universal computation:

Mozes’89: tilings simulate ‘rectangular’ substitution system

Goodman-Strauss’98: tilings simulate any geometric substitution
system

Hierarchical structures but no universal computation:

Mozes’89: tilings simulate ‘rectangular’ substitution system

Goodman-Strauss’98: tilings simulate any geometric substitution
system

Non-hierarchical structure and non-universal computations:

Hierarchical structures but no universal computation:

Mozes’89: tilings simulate ‘rectangular’ substitution system

Goodman-Strauss’98: tilings simulate any geometric substitution
system

Non-hierarchical structure and non-universal computations:

Culik—Kari’96

Hierarchical structures but no universal computation:

Mozes’89: tilings simulate ‘rectangular’ substitution system

Goodman-Strauss’98: tilings simulate any geometric substitution
system

Non-hierarchical structure and non-universal computations:

Culik—Kari'96 + Jeandel-Rao’15:

Hierarchical structures but no universal computation:

Mozes’89: tilings simulate ‘rectangular’ substitution system

Goodman-Strauss’98: tilings simulate any geometric substitution
system

Non-hierarchical structure and non-universal computations:
Culik—Kari’96 + Jeandel-Rao’15:

> embedded simple finite automata (transducers)

Hierarchical structures but no universal computation:

Mozes’89: tilings simulate ‘rectangular’ substitution system

Goodman-Strauss’98: tilings simulate any geometric substitution
system

Non-hierarchical structure and non-universal computations:
Culik—Kari’96 + Jeandel-Rao’15:

> embedded simple finite automata (transducers),

> aperiodic tilings with very small number of tiles

Hierarchical structures but no universal computation:

Mozes’89: tilings simulate ‘rectangular’ substitution system

Goodman-Strauss’98: tilings simulate any geometric substitution
system

Non-hierarchical structure and non-universal computations:

Culik—Kari’96 + Jeandel-Rao’15:

> embedded simple finite automata (transducers),
> aperiodic tilings with very small number of tiles

» tilings with really interesting properties

Take home messages:

30/30

Take home messages:

» embedding a TM in a tiling can be useful even

if you do not care about computability

30/ 3

Take home messages:

» embedding a TM in a tiling can be useful even

if you do not care about computability

» self-simulating tilings is a flexible tool

30/ 3

Take home messages:

» embedding a TM in a tiling can be useful even

if you do not care about computability

» self-simulating tilings is a flexible tool,
arguably the first (lazy) option to try

30/ 3

Take home messages:

» embedding a TM in a tiling can be useful even

if you do not care about computability

» self-simulating tilings is a flexible tool,
arguably the first (lazy) option to try

» for more subtle problems there exist trickier techniques

30/ 3

Take home messages:

» embedding a TM in a tiling can be useful even

if you do not care about computability

» self-simulating tilings is a flexible tool,
arguably the first (lazy) option to try

» for more subtle problems there exist trickier techniques

Thank you!

30/ 3

