Embedding computations in tilings

Andrei Romashchenko

26 September 2017, ENS de Lyon

► **SFT** (subshift of finite type)

▶ **SFT** (subshift of finite type) on \mathbb{Z}^2 over an alphabet Σ :

▶ **SFT** (subshift of finite type) on \mathbb{Z}^2 over an alphabet Σ : the set $S_{\mathcal{F}}$ of all configurations $f: \mathbb{Z}^2 \to \Sigma$ that avoid forbidden patterns from some finite family \mathcal{F}

- ▶ **SFT** (subshift of finite type) on \mathbb{Z}^2 over an alphabet Σ : the set $S_{\mathcal{F}}$ of all configurations $f: \mathbb{Z}^2 \to \Sigma$ that avoid forbidden patterns from some finite family \mathcal{F}
- ► **COMPUTATION** (algorithm):

- ▶ **SFT** (subshift of finite type) on \mathbb{Z}^2 over an alphabet Σ : the set $S_{\mathcal{F}}$ of all configurations $f: \mathbb{Z}^2 \to \Sigma$ that avoid forbidden patterns from some finite family \mathcal{F}
- ► **COMPUTATION** (algorithm): Turing machine with one or many bi-infinite tapes

A. undecidability results:

A. undecidability results:

 $\text{(i)} \quad \begin{array}{ll} \text{properties of a} \\ \text{Turing machine} \end{array} \iff \begin{array}{ll} \text{properties of an SFT with} \\ \text{an embedded computation} \end{array}$

A. undecidability results:

- (i) $\begin{array}{ccc} \text{properties of a} \\ \text{Turing machine} \end{array} \iff \begin{array}{ccc} \text{properties of an SFT with} \\ \text{an embedded computation} \end{array}$
- (ii) many properties of a TM are algorithmically undecidable

A. undecidability results:

- $\text{(i)} \quad \begin{array}{ll} \text{properties of a} \\ \text{Turing machine} \end{array} \iff \begin{array}{ll} \text{properties of an SFT with} \\ \text{an embedded computation} \end{array}$
- (ii) many properties of a TM are algorithmically undecidable
- (i) + (ii) \Rightarrow properties of an SFT are algorithmically undecidable

A. undecidability results:

- (i) $\begin{array}{ccc} \text{properties of a} & \Longleftrightarrow & \text{properties of an SFT with} \\ \text{Turing machine} & \Longleftrightarrow & \text{an embedded computation} \end{array}$
- (ii) many properties of a TM are algorithmically undecidable
- (i) + (ii) \Rightarrow properties of an SFT are algorithmically undecidable

B. combinatorial/topological/dynamical properties of SFT:

A. undecidability results:

- (i) $\begin{array}{ccc} \text{properties of a} & \Longleftrightarrow & \text{properties of an SFT with} \\ \text{Turing machine} & \Longleftrightarrow & \text{an embedded computation} \end{array}$
- (ii) many properties of a TM are algorithmically undecidable
- (i) + (ii) \Rightarrow properties of an SFT are algorithmically undecidable

B. combinatorial/topological/dynamical properties of SFT:

proofs of positive results require constructions

A. undecidability results:

- (i) $\begin{array}{ccc} \text{properties of a} & \Longleftrightarrow & \text{properties of an SFT with} \\ \text{Turing machine} & \Longleftrightarrow & \text{an embedded computation} \end{array}$
- (ii) many properties of a TM are algorithmically undecidable
- (i) + (ii) \Rightarrow properties of an SFT are algorithmically undecidable

B. combinatorial/topological/dynamical properties of SFT:

- proofs of positive results require constructions
- algorithm is a construction par excellence

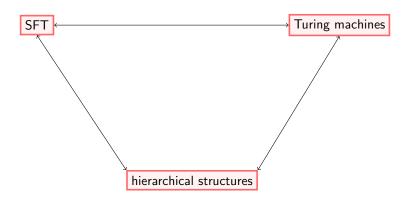
A. undecidability results:

- (i) properties of a \iff properties of an SFT with Turing machine \iff an embedded computation
- (ii) many properties of a TM are algorithmically undecidable
- (i) + (ii) \Rightarrow properties of an SFT are algorithmically undecidable

B. combinatorial/topological/dynamical properties of SFT:

- proofs of positive results require constructions
- algorithm is a construction par excellence

SFT ← Turing machines



► Berger/Robinson's approach

- ► Berger/Robinson's approach
- Self-simulating tilings

- ► Berger/Robinson's approach
- Self-simulating tilings (goes back to self-simulating automata,
 P. Gács and even earlier J. von Neumann)

- ► Berger/Robinson's approach
- ► Self-simulating tilings (goes back to self-simulating automata, P. Gács and even earlier J. von Neumann)

▶ Color: an element of a finite set $C = \{\cdot, \cdot, \cdot, \cdot, \cdot, \cdot, \cdot, \cdot\}$

- ▶ Color: an element of a finite set $C = \{\cdot, \cdot, \cdot, \cdot, \cdot, \cdot, \cdot, \cdot\}$
- ▶ Wang Tile: a unit square with colored sides.

- ▶ Color: an element of a finite set $C = \{\cdot, \cdot, \cdot, \cdot, \cdot, \cdot, \cdot, \cdot\}$
- ▶ Wang Tile: a unit square with colored sides.
 - i.e, an element of C^4 , e.g.,

- ▶ Color: an element of a finite set $C = \{\cdot, \cdot, \cdot, \cdot, \cdot, \cdot, \cdot, \cdot\}$
- ► Wang Tile: a unit square with colored sides. i.e, an element of C⁴, e.g.,
- ▶ Tile set: a set $\tau \subset C^4$

- ▶ Color: an element of a finite set $C = \{\cdot, \cdot, \cdot, \cdot, \cdot, \cdot, \cdot, \cdot\}$
- ► Wang Tile: a unit square with colored sides. i.e, an element of C⁴, e.g.,
- ▶ Tile set: a set $\tau \subset C^4$
- ▶ Tiling: a configuration $f: \mathbb{Z}^2 \to \tau$, where every two adjacent tiles share the same color on the common side

- ▶ Color: an element of a finite set $C = \{\cdot, \cdot, \cdot, \cdot, \cdot, \cdot, \cdot, \cdot\}$
- ► Wang Tile: a unit square with colored sides. i.e, an element of C⁴, e.g.,
- ▶ Tile set: a set $\tau \subset C^4$
- ▶ Tiling: a configuration $f: \mathbb{Z}^2 \to \tau$, where every two adjacent tiles share the same color on the common side, e.g.,

 $T \in \mathbb{Z}^2$ is a **period** if f(x+T) = f(x) for all x.

 $T \in \mathbb{Z}^2$ is a **period** if f(x+T) = f(x) for all x.

Theorem. [Berger] There exists a non-empty SFT (even a tileset) on \mathbb{Z}^2 where all configurations are aperiodic.

 $T \in \mathbb{Z}^2$ is a **period** if f(x+T) = f(x) for all x.

Theorem. [Berger] There exists a non-empty SFT (even a tileset) on \mathbb{Z}^2 where all configurations are aperiodic.

A construction of an aperiodic tile set:

 $T \in \mathbb{Z}^2$ is a **period** if f(x+T) = f(x) for all x.

Theorem. [Berger] There exists a non-empty SFT (even a tileset) on \mathbb{Z}^2 where all configurations are aperiodic.

A construction of an aperiodic tile set:

define self-similar tile sets

Aperiodic tilings

 $T \in \mathbb{Z}^2$ is a **period** if f(x+T) = f(x) for all x.

Theorem. [Berger] There exists a non-empty SFT (even a tileset) on \mathbb{Z}^2 where all configurations are aperiodic.

A construction of an aperiodic tile set:

- define self-similar tile sets
- observe that every self-similar tile set is aperiodic

Aperiodic tilings

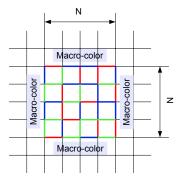
 $T \in \mathbb{Z}^2$ is a **period** if f(x+T) = f(x) for all x.

Theorem. [Berger] There exists a non-empty SFT (even a tileset) on \mathbb{Z}^2 where all configurations are aperiodic.

A construction of an aperiodic tile set:

- define self-similar tile sets
- observe that every self-similar tile set is aperiodic
- construct some self-similar tile set

Macro-tile:



an $N \times N$ square made of matching τ -tiles

Fix a tile set τ and an integer N > 1.

Fix a tile set τ and an integer N > 1.

Definition 1. A τ -macro-tile: an $N \times N$ square made of τ -tiles.

Fix a tile set τ and an integer N > 1.

Definition 1. A τ -macro-tile: an $N \times N$ square made of τ -tiles.

Definition 2. A tile set ρ is **simulated** by τ : there exists a family of τ -macro-tiles R such that

- **R** is *isomorphic* to ρ , and
- every τ -tiling can be *uniquely* split by an $N \times N$ grid into macro-tiles from R.

Example.

A tile set ρ : Trivial tile set (only one color)

Example.

A tile set ρ : Trivial tile set (only one color)

A tile set $\tau \colon$ A tile set that simulates a trivial tile set ρ

Example.

A tile set ρ : Trivial tile set (only one color)

A tile set au: A tile set that simulates a trivial tile set ho

		1	V		
	(0,0)			(N-1,0)	
(0, N-1)					(0, N-1)
(0,0)					(0,0)
	(0,0)			(N-1,0)	

Proposition. Self-similar tile set is aperiodic.

Proposition. Self-similar tile set is aperiodic.

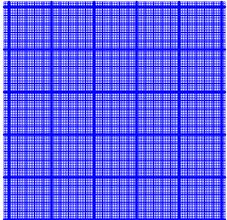
Sketch of the proof:

Proposition. Self-similar tile set is aperiodic.

Sketch of the proof:

Proposition. Self-similar tile set is aperiodic.

Sketch of the proof:



Representation of the tile set ρ :

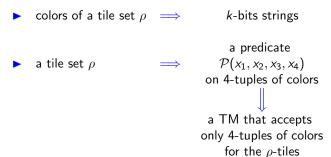
Representation of the tile set ρ :

ightharpoonup colors of a tile set $\rho \implies k$ -bits strings

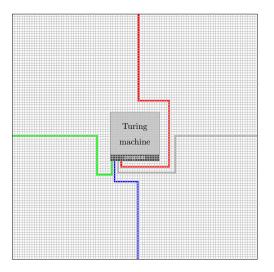
Representation of the tile set ρ :

- ightharpoonup colors of a tile set $\rho \implies k$ -bits strings
 - a predicate
- ightharpoonup a tile set ho \Longrightarrow $\mathcal{P}(x_1,x_2,x_3,x_4)$ on 4-tuples of colors

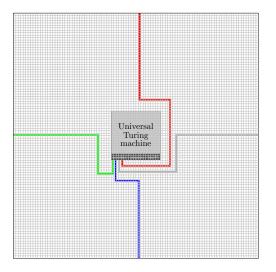
Representation of the tile set ρ :



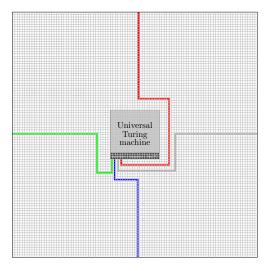
The scheme of implementation:



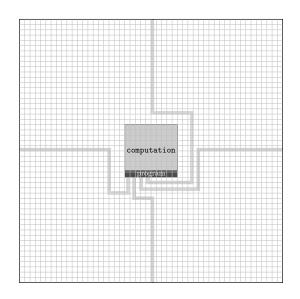
A more generic construction: universal TM + program

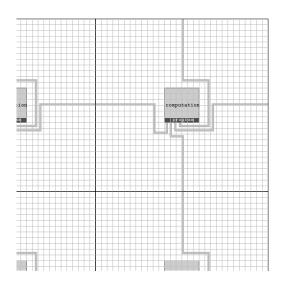


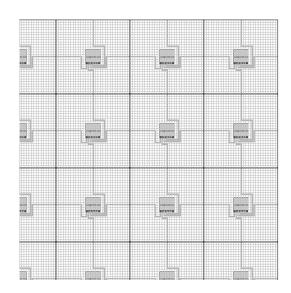
A more generic construction: universal TM + program



A fixed point: simulating tile set = simulated tile set





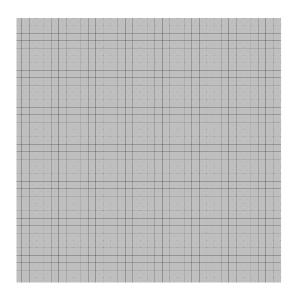


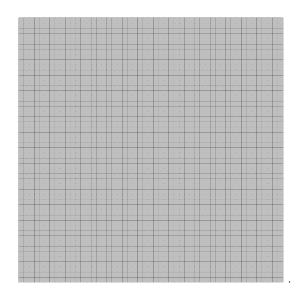
	-(-)	-(3)	-(2)	-(3)	-(3)	(3)	
				(-3)	(-3)		
							Ĩ
						E	T.
	- E	- E	- E	- E	- E	- E	
_							

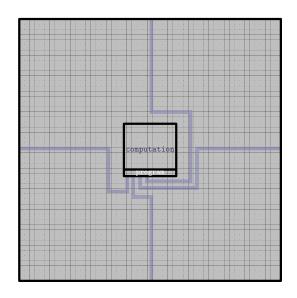
=	=	-	=	H	=	=	=	H	=
-	=	-	=	Н	=	-	Ξ	Н	=
=	Ξ	-	=	Ξ	=	-	Ξ	Ξ	Ξ
-	-	-	-	-	-	-	-	-	-
=	=	-	=	Η	=	-	T.	Η	=
=	=		=	=	=	=	=	=	=
Н	Ξ	-	=	Η	=	-	-	Н	Ξ
-	=	-	-	Ξ	=		-	-	=
-	-		-	-1	-	=	J	1	=
=	=	-	=	Η	=	-	J	H	=

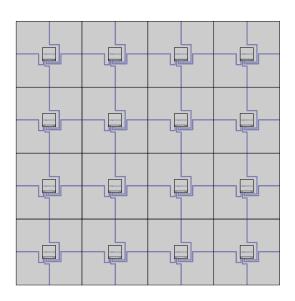
-		=					=					
-		-			-	-	-			-		-
=		-		-	-	-	-		-	-		=
-	-	-		-	-		-		-	-	-	-
-		=	-	-	-	-	=	77	-	-		=
=		-		-	=		-		=			-
-	-	-			-		-				-	
=	-	-	=	-	=		-	-	-	=	-	-
-		-			-		-					-
=	-	-	=	-	=		-	-	=	=	-	-
=	-	-			-	-	-		-	-	-	-
=		=		-	-	=	=		-	-		-
-		_		-	-		_		-	-		_

_															
	-			-											
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ī	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ī	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		-	-	-	-	-	-	-	-	-	-	-	-	-
Ī	-	=	-	-	-	-	-	=	-	-	-	-	-	=	-
	-		-	=	-	-	-	-	-	-	-	-	-	-	-
-															



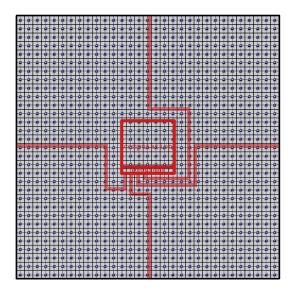


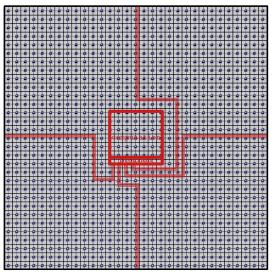




 <u>-</u>	 -0-	-0-	-0-		<u> </u>	-	-0-	-0-
 1	 -	-	-	<u>-</u>	-	-		-
 -	 					-		-
 4	 			_	-	-		-
 4	 -	-	-	_	-	-	-	-
 -	 -	-	-		-	-	-	-
 -	 -	-	-	-	-	-	-	-
 -	 -	-	-	-	-	-	-	-
 -	 -	-	-	-	-	-	-	-
 -	 -	-	-		-	-	-	-
 -	 -	-	-	-	-	-	-	-

-	a	•	•	•	•	a	d	a		a	a	•	•	-	-	-	-	-0-	-0	0	•	0	•	•	•	•	•	•	•	0
-	a	a	a	a	a	a		a				9	9	9	۰	•	•		a		-	a		-	a	a		a	•	-
-	a	a	a	a	a	a	٠	ė.	٠	٠		۰	۰						a	٠	a	a	•	a	a	a	•	•	•	
-	٠	٠	a	a	a	a	٠	٠	٠	٠	٠	۰	۰	•	•					a	-	a	a	٠	a	a	٠	٠		
4	٠	٠	a	a	a	٠	٠	ė.	٠	٠	٠	۰	۰	۰	۰				a	a		a	a	٠	٠	٠	٠	٠		
a	a	٠	٠	٠	ò	ė.		ė.	٠	٠	٠	٠	•	۰	•				a	a		a		۰	٠	٠	٠			
-	a	a	a	٠	٠	٠	ą.	٠	٠	٠	٠	9	4	4	•	4	4	-0	a	4	•	a	4	a	a	٠	4	4	4	4
a	a	a	a	4	4	4	a.	a	٠	٠		9	9	4	4	•	4	4	4	4	-	a	4	a	a	4		4	4	4
a	a	a	a	4	4	a	a	a	4	a		9	9	•	•	•	ė.	4	4	a	4	a	4	a	a	a	4	4	4	a
a	a	a	a	a	a	a	a	a	a	a	a	a	a	a	4	a	a	a	a	a	a	a	a	a	a	a	a	a	a	a
a	a	a	a	a	a	a	a	a	a	a	a	a	a	a	a	a	a	a	a	a	a	a	a	a	a	a	a	a	a	a
a	a	a	a	a	a	a	4	a	a	a	a	a	a	a	a	a	a	a	a	a	a	a	a	a	a	a	a	a	a	a
a	a	a	a	a	a	a	ą.	a	a	a	a	a	a	a	a	a	a.	a	a	a	a	a	a	a	a	a	a	a	a	a
•	a	a	a	a	ą.	a	a	a	a	a	a	a	a	a	4	4	4	a	4	4	a	q	a	a	a	a	a	a	4	a
-	a	a	a	a	a	a	4	a	a	a	•	4	¢	4	4	4	4	4	4	4	4	ď	4	a	a	a	4	4	4	-
-	a	a	a	a	a	a	4	a	a	a	•	4	ø	4	4	4	4	4	4	ď	4	ď	4	a	a	a	4	4	4	-
-	a	a	a	a	a	a	4	a	a	a	•	ø	Ġ	Ġ	à	a	4	4	ď	a	ď	D	•	a	a	a	-	-	•	•
-	4	4	4	4	4	4	a	4	4	•	a	ò	ò	•	•	•	4	a	4	4	ď	p	a	4	4	4	a	a	•	•
a	a	a	a	a	ø	ø	4	0	0	ø	0	ø	•	a	a	•	a	9	a	a	ņ	ņ	p	a	a	a	•	•	•	•
•	a	a	a	a	ø	ø	4	ø	ø	٠	٠	0	0	•	•	a	a	4	a	a	ņ	ņ	ņ	a	a	a	•	•	4	•
4	a	a	a	٠	ø	ø	4	ø	ø	٠	٠	0	0	0	•	•	a	-	a	a	ď	ņ	ď	a	a	٠	٠	٠	4	4
-	4	4	4	•	•	•	4	•	٠	٠	٠	9	9	9	4	•	4	4	4	4	ď	ď	4	4	4	•	٠	٠	4	4
-4	a	4	•	٠	٠	•	4	4	•	٠	•	9	9	9	9	9	4	-0	4	q	ď	ď	4	4	•	•	4	4	4	4
-	a	a	4	•	٠	4	4	4	٠	٠	•	9	9	9	9	4	4	-	q	q	ď	D	4	a	4	•	4	4	4	4
a	a	a	a	4	4	4	4	4	4	٠	•	9	9	9	4	4	4	4	q	4	9	D	ď	a	a	4	•	•	4	4
a	a	a	a	a	a	4	a	4	4	4	a	9	9	9	4	4	4	4	4	4	ď	D	ď	a	a	a	a	a	a	a
•	4	4	4	4	4	4	a	4	4	4	a	4	4	4	4	4	4	4	4	ď	Ď	D	ď	4	a	4	a	a	a	a
•	4	4	4	4	4	4	4	4	4	4	a	d	đ	4	4	4	+	4	4	a		b	Ď	4	a	4	a	a	a	a
•	4	¢	q	4	4	4	4	4	4	4	a	¢	4	4	4	+	+	a	4	4	4	ď	ď	4	à	a	a	a	4	a
a	4	a	a	a	a	a	a	a	a	a	a	Ġ	å	å	4	4	4	4	4	4	ď	ď	ď	a	a	a	a	a	4	a
•	a	a	a	4	4	a	a	a	a	4	a	4	4	4	+	+	+	4	4	4	4	4	4	4	4	4	•	a	4	4





N.B. We can variate the zoom factor!

Theorem. [Ballier-Ollinger]

There exists an aperiodic and minimal SFT.

Theorem. [Ballier-Ollinger]

There exists an aperiodic and minimal SFT.

How to make an aperiodic SFT minimal?

Theorem. [Ballier–Ollinger]

There exists an aperiodic and minimal SFT.

How to make an aperiodic SFT *minimal*?

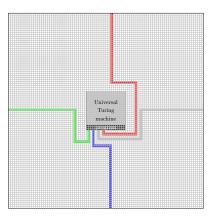
Ollinger: take Robinson's construction and remove everything that may

appear not infinitely often

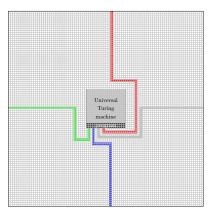
our plan: take the fixed-point construction and enforce everything that may

appear at least once

How to get aperiodicity + minimality ?

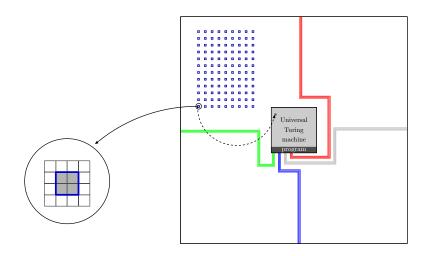


How to get aperiodicity + minimality ?

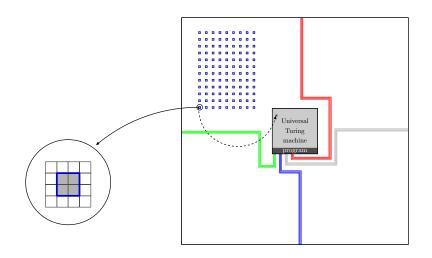


The problematic part is the computation zone...

Duplicate each 2×2 pattern that may appear in the computation zone!



Duplicate each 2×2 pattern that may appear in the computation zone!



Imprisonment for diversity!

A slot for a 2×2 patterns from the computation zone:

(i, j + 4)	(i + 1, j + 4)	(i+2, j+4)	(i + 3, j + 4)
(i, j + 3) $(i + 1, j + 3)$	(i+1, j+3) $(i+2, j+3)$	(i+2, j+3) $(i+3, j+3)$	(i+3, j+3) $(i+4, j+3)$
(i, j + 3)	(s, t + 2)	(s + 1, t + 2)	(i + 3, j + 3)
(i, j + 3)	(s, t + 2)	(s+1, t+2)	(i + 3, j + 3)
$(i,j+2) \qquad (s,t+1)$	(s, t+1) $(s+1, t+1)$	(s+1,t+1) $(s+2,t+1)$	(s+2,t+1) $(i+4,j+2)$
(i, j+2)	(s, t + 1)	(s+1, t+1)	(i + 3, j + 2)
(i, j + 2)	(s, t + 1)	(s+1, t+1)	(i + 3, j + 2)
(i, j + 1) (s, t)	(s,t) $(s+1,t)$		
	(0,12)	(s+1,t) $(s+2,t)$	(s+2,t) $(i+4,j+1)$
(i, j + 1)	(s,t)	(s+1,t) $(s+2,t)$ $(s+1,t)$	(s+2,t) $(i+4,j+1)(i+3,j+1)$
(i, j + 1) (i, j + 1)			
(i, j + 1)	(s,t) (s,t)	(s+1,t) $(s+1,t)$	(i+3,j+1)

A slot for a 2×2 patterns from the computation zone:

(i, j + 4)	(i + 1, j + 4)	(i + 2, j + 4)	(i + 3, j + 4)
(i, j + 3) $(i + 1, j + 3)$	(i+1, j+3) $(i+2, j+3)$	(i+2, j+3) $(i+3, j+3)$	(i+3, j+3) $(i+4, j+3)$
(i, j+3)	(s, t+2)	(s + 1, t + 2)	(i + 3, j + 3)
(i, j+3)	(s, t + 2)	(s+1, t+2)	(i + 3, j + 3)
$(i,j+2) \qquad (s,t+1)$	(s, t+1) $(s+1, t+1)$	(s+1,t+1) $(s+2,t+1)$	(s+2,t+1) $(i+4,j+2)$
(i, j+2)	(s, t + 1)	(s+1, t+1)	(i + 3, j + 2)
(i, j + 2)	(s, t + 1)	(s+1, t+1)	(i + 3, j + 2)
$(i,j+1) \hspace{1cm} (s,t)$	$(s,t) \qquad \qquad (s+1,t)$	$(s+1,t) \hspace{1cm} (s+2,t)$	(s+2,t) $(i+4,j+1)$
$(i,j+1) \qquad \qquad (s,t)$ $(i,j+1)$	$(s,t) \qquad \qquad (s+1,t)$ (s,t)	$(s+1,t) \qquad \qquad (s+2,t)$ $(s+1,t)$	$(s+2,t) \qquad (i+4,j+1)$ $(i+3,j+1)$
(i, j + 1) $(i, j + 1)$	(s,t) (s,t)	(s+1,t) $(s+1,t)$	(i + 3, j + 1)

Grey cells: It seems we sit inside of the computation zone, we make part of a huge computation!

A slot for a 2×2 patterns from the computation zone:

(i, j + 4)	(i + 1, j + 4)	(i + 2, j + 4)	(i + 3, j + 4)
$(i,j+3) \qquad (i+1,j+3)$	(i+1, j+3) $(i+2, j+3)$	(i+2, j+3) $(i+3, j+3)$	(i+3, j+3) $(i+4, j+3)$
(i, j+3)	(s, t+2)	(s+1,t+2)	(i + 3, j + 3)
(i, j + 3)	(s, t + 2)	(s+1, t+2)	(i + 3, j + 3)
$(i,j+2) \hspace{1cm} (s,t+1)$	(s, t+1) $(s+1, t+1)$	(s+1,t+1) $(s+2,t+1)$	(s+2, t+1) $(i+4, j+2)$
(i, j + 2)	(s, t + 1)	(s+1, t+1)	(i + 3, j + 2)
(i, j + 2)	(s, t + 1)	(s+1, t+1)	(i + 3, j + 2)
(i, j + 1) (s, t)	$(s,t) \qquad \qquad (s+1,t)$	$(s+1,t) \qquad (s+2,t)$	$(s+2,t) \qquad (i+4,j+1)$
(i, j + 1)	(s,t)	(s + 1, t)	(i + 3, j + 1)
(i, j + 1)	(s,t)	(s + 1, t)	(i + 3, j + 1)
(i, j) $(i, j + 1)$	$(i+1,j) \qquad (i+2,j)$	$(i+2,j) \qquad (i+3,j)$	$(i+3,j) \qquad (i+4,j)$
		1	

Grey cells: It seems we sit inside of the computation zone, we make part of a huge computation!

White cells: Guys, you four are living in a small prison in the middle of nowhere...

$$h = \frac{\sqrt{5} - 1}{2}$$

$$h = \frac{\sqrt{5}-1}{2}$$
, or $6/\pi^2$

$$h = \frac{\sqrt{5}-1}{2}$$
, or $6/\pi^2$, or $\sum_{n=1}^{\infty} \frac{1}{2^{n!}}$

$$h = \frac{\sqrt{5}-1}{2}$$
, or $6/\pi^2$, or $\sum_{n=1}^{\infty} \frac{1}{2^{n!}}$, or $\sqrt[3]{\pi + e}$

$$h = \frac{\sqrt{5}-1}{2}$$
, or $6/\pi^2$, or $\sum_{n=1}^{\infty} \frac{1}{2^{n!}}$, or $\sqrt[3]{\pi + e}$, etc.

e.g., there exist SFTs with entropies

$$h = \frac{\sqrt{5}-1}{2}$$
, or $6/\pi^2$, or $\sum_{n=1}^{\infty} \frac{1}{2^{n!}}$, or $\sqrt[3]{\pi + e}$, etc.

Any number that can appear in real maths.

e.g., there exist SFTs with entropies

$$h = \frac{\sqrt{5}-1}{2}$$
, or $6/\pi^2$, or $\sum_{n=1}^{\infty} \frac{1}{2^{n!}}$, or $\sqrt[3]{\pi + e}$, etc.

Any number that can appear in real maths. And even slightly more.

Questions:

Questions:

► **Hochman–Meyerovitch:** What about transitivity?

Questions:

- ► **Hochman–Meyerovitch:** What about transitivity?
- Schraudner: What about some kind of (uniform) mixing?

Weakly irreducible: every two globally admissible finite patterns can be combined in one infinite configuration

Weakly irreducible: every two globally admissible finite patterns can be combined in one infinite configuration (with a bounded distance).

Weakly irreducible: every two globally admissible finite patterns can be combined in one infinite configuration (with a bounded distance).

Transitive: There exists a configuration that contains all globally admissible finite patterns.

(step 1) construct a tileset au such that

two types of tiles, blue and red

- two types of tiles, blue and red
- guarantee that lim sup[density of red tiles] = h

- two types of tiles, blue and red
- guarantee that lim sup[density of red tiles] = h
- guarantee transitivity and weak irreducibility

- two types of tiles, blue and red
- guarantee that lim sup[density of red tiles] = h
- guarantee transitivity and weak irreducibility
- entropy $(\tau) = 0$.

(step 1) construct a tileset au such that

- two types of tiles, blue and red
- guarantee that lim sup[density of red tiles] = h
- guarantee transitivity and weak irreducibility
- entropy $(\tau) = 0$.

(step 2) an SFT τ' :

(step 1) construct a tileset au such that

- two types of tiles, blue and red
- guarantee that lim sup[density of red tiles] = h
- guarantee transitivity and weak irreducibility
- entropy $(\tau) = 0$.

(step 2) an SFT τ' :

make two copies of each red tile

(step 1) construct a tileset au such that

- two types of tiles, blue and red
- guarantee that lim sup[density of red tiles] = h
- guarantee transitivity and weak irreducibility
- entropy $(\tau) = 0$.

(step 2) an SFT τ' :

make two copies of each red tile

Result:

(step 1) construct a tileset au such that

- two types of tiles, blue and red
- guarantee that lim sup[density of red tiles] = h
- guarantee transitivity and weak irreducibility
- entropy $(\tau) = 0$.

(step 2) an SFT τ' :

make two copies of each red tile

Result:

• entropy $(\tau') = h$

(step 1) construct a tileset au such that

- two types of tiles, blue and red
- guarantee that lim sup[density of red tiles] = h
- guarantee transitivity and weak irreducibility
- entropy $(\tau) = 0$.

(step 2) an SFT τ' :

make two copies of each red tile

Result:

- ▶ entropy $(\tau') = h$
- weak irreducibility: got for free

(step 1) construct a tileset au such that

- two types of tiles, blue and red
- guarantee that lim sup[density of red tiles] = h
- guarantee transitivity and weak irreducibility
- entropy $(\tau) = 0$.

(step 2) an SFT τ' :

make two copies of each red tile

Result:

- entropy $(\tau') = h$
- weak irreducibility: got for free
- transitivity: random instantiation of red tiles

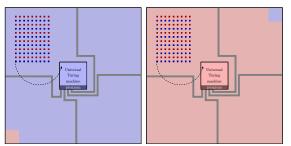
- ▶ $\limsup[density of red tiles] = h$
- transitive and irreducibile

- ▶ $\limsup[density of red tiles] = h$
- transitive and irreducibile

blue macro-tiles and red macro-tiles:

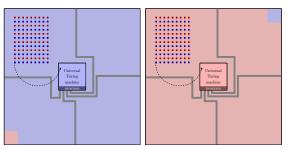
- ▶ $\limsup[density of red tiles] = h$
- transitive and irreducibile

blue macro-tiles and red macro-tiles:



- ▶ lim sup[density of red tiles] = h
- transitive and irreducibile

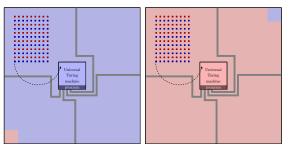
blue macro-tiles and red macro-tiles:



▶ most ground-level tiles in a blue macro-tile are blue

- ▶ $\limsup[density of red tiles] = h$
- transitive and irreducibile

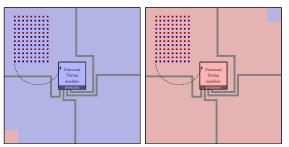
blue macro-tiles and red macro-tiles:



- ▶ most ground-level tiles in a blue macro-tile are blue
- most ground-level tiles in a red macro-tile are red

- ▶ lim sup[density of red tiles] = h
- transitive and irreducibile

blue macro-tiles and red macro-tiles:



- ▶ most ground-level tiles in a blue macro-tile are blue
- most ground-level tiles in a red macro-tile are red
- the fraction red tiles in a red macro-tile approaches the limit

Hierarchical constructions: self-simulating vs Berger/Robinson's

Hierarchical constructions: self-simulating vs Berger/Robinson's

	self-simulating tilings	Robinson's construction
undecidability of the domino problem	+	Berger'66
tilings with only noncom- putable points	+	Hanf–Myers'74
any effectively closed 1D subshift is isomorphic to the subdynamics of a 2D SFT	Durand–R–Shen	Aubrun–Sablik
similar result for <i>minimal</i> subshifts	Durand–R	?
strongly deterministic tilings	-	Kari, Papasoglu, Lukkarila, Le Gloannec, Ollinger
pairwise different black squares in the white ocean	Westrick	?

Mozes'89: tilings simulate 'rectangular' substitution system Goodman-Strauss'98: tilings simulate any geometric substitution system

Mozes'89: tilings simulate 'rectangular' substitution system Goodman-Strauss'98: tilings simulate any geometric substitution system

Non-hierarchical structure and non-universal computations:

Mozes'89: tilings simulate 'rectangular' substitution system Goodman-Strauss'98: tilings simulate any geometric substitution system

Non-hierarchical structure and non-universal computations:

Culik-Kari'96

Mozes'89: tilings simulate 'rectangular' substitution system Goodman-Strauss'98: tilings simulate any geometric substitution system

Non-hierarchical structure and non-universal computations:

Culik-Kari'96 + Jeandel-Rao'15:

Mozes'89: tilings simulate 'rectangular' substitution system Goodman-Strauss'98: tilings simulate any geometric substitution system

Non-hierarchical structure and non-universal computations:

Culik-Kari'96 + Jeandel-Rao'15:

embedded simple finite automata (transducers)

Mozes'89: tilings simulate 'rectangular' substitution system Goodman-Strauss'98: tilings simulate any geometric substitution system

Non-hierarchical structure and non-universal computations:

Culik-Kari'96 + Jeandel-Rao'15:

- embedded simple finite automata (transducers),
- aperiodic tilings with very small number of tiles

Mozes'89: tilings simulate 'rectangular' substitution system Goodman-Strauss'98: tilings simulate any geometric substitution system

Non-hierarchical structure and non-universal computations:

Culik-Kari'96 + Jeandel-Rao'15:

- embedded simple finite automata (transducers),
- aperiodic tilings with very small number of tiles
- tilings with really interesting properties

 embedding a TM in a tiling can be useful even if you do not care about computability

- embedding a TM in a tiling can be useful even if you do not care about computability
- self-simulating tilings is a flexible tool

- embedding a TM in a tiling can be useful even if you do not care about computability
- self-simulating tilings is a flexible tool, arguably the first (lazy) option to try

- embedding a TM in a tiling can be useful even if you do not care about computability
- self-simulating tilings is a flexible tool, arguably the first (lazy) option to try
- ▶ for more subtle problems there exist trickier techniques

- embedding a TM in a tiling can be useful even if you do not care about computability
- self-simulating tilings is a flexible tool, arguably the first (lazy) option to try
- for more subtle problems there exist trickier techniques

Thank you!