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Two central notions in this talk:

» SFT (subshift of finite type) on Z? over an alphabet ¥:

the set Sr of all configurations f : Z? — ¥ that avoid

forbidden patterns from some finite family F

» COMPUTATION (algorithm):
Turing machine with one or many bi-infinite tapes

N
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Embedding computation in a subshift... Why?

A. undecidability results:

properties of a properties of an SFT with
Turing machine an embedded computation

(i)
(ii) many properties of a TM are algorithmically undecidable

(i) + (ii) = properties of an SFT are algorithmically undecidable

B. combinatorial /topological /dynamical properties of SFT:

» proofs of positive results require constructions

» algorithm is a construction par excellence
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> Berger/Robinson's approach

> Self-simulating tilings (goes back to self-simulating automata,
P. Gécs and even earlier J. von Neumann)
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Special type of SFT: Wang tilings

» Wang Tile: a unit square with colored sides.

i.e, an element of C*, eg.,
» Tile set: a set 7 ¢ C*

» Tiling: a configuration f: Z? — 7, where
every two adjacent tiles share the same color on the common side,

e.g.,
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Aperiodic tilings
T € Z? is a period if f(x + T) = f(x) for all x.

Theorem. [Berger] There exists a non-empty SFT (even a tileset) on Z2
where all configurations are aperiodic.

A construction of an aperiodic tile set:

> define self-similar tile sets
» observe that every self-similar tile set is aperiodic

» construct some self-similar tile set



Macro-tile:

N

Macrg-color

Macro-color

Macro-color

NN

acrt£—col Dr

an N x N square made of matching 7-tiles
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Fix a tile set 7 and an integer N > 1.
Definition 1. A 7-macro-tile: an N x N square made of 7-tiles.

Definition 2. A tile set p is simulated by 7: there exists a family of
T-macro-tiles R such that

» R is isomorphic to p, and

> every 7-tiling can be uniquely split by an N x N grid into
macro-tiles from R.
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Example.

A tile set p: Trivial tile set (only one color)
A tile set 7: A tile set that simulates a trivial tile set p

(2, )

(i, +1)

(i,4)

(i +1,7)
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Sketch of the proof:
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Simulating a given tile set p by macro-tiles.
Representation of the tile set p:

> colors of a tileset p — k-bits strings
a predicate
> atilesetp = P(x1,x2, X3, Xa)

on 4-tuples of colors

a TM that accepts
only 4-tuples of colors
for the p-tiles



The scheme of implementation:

«O» «F>»
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i
v
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A more generic construction: universal TM + program
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A more generic construction: universal TM + program

A fixed point: simulating tile set = simulated tile set

DA
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N.B. We can variate the zoom factor!
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Theorem. [Ballier—Ollinger]

There exists an aperiodic and minimal SFT.

How to make an aperiodic SFT minimal ?

Ollinger: take Robinson's construction and remove everything that may
appear not infinitely often

our plan: take the fixed-point construction and enforce everything that may
appear at least once



How to get aperiodicity + minimality 7
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How to get aperiodicity + minimality 7

The problematic part is the computation zone...

DA
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Duplicate each 2 x 2 pattern that may appear in the computation zone!
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Duplicate each 2 x 2 pattern that may appear in the computation zone!

cssoessoooe
| @cosscons
: i
Y ' Universal
: | Turing
‘\\ - machine
o program

Imprisonment for diversity!
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A slot for a 2 x 2 patterns from the computation zone:

(ij+4) (i+1,j+4) (i+2,j+4) (i+3,j+4)
(i, +3) (LG43 [ +1,5+3) (+25+3)[(i+27+3) (i+3,+3)[((+3,7+3) (i+4j+3)
(i, +3) (s,t+2) (s+1,t+2) (i+3.j+3)
(i +3) (i+3.5+3)

(i +2) (s.041) (s +2.64+1) (i+4.5+2)
(i,j+2) (i+3,j+2)
i+2) (i+3.5+2)

(i.3+1) (s.t) (s+2,1) (i+4,j+1)

Gi+1) (i+3.5+1)

(Li+1) (s,1) (s+1.4) (i+3,j+1)

(i.4) (G +1) | i+ 1) (i+2.) | (i+2.) (i+3.9) | (i+3.5 (i+4.3)
G.4) (+1.5) (i+2.5) (i+3.4)

Do
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A slot for a 2 x 2 patterns from the computation zone

(i +4) (i+1,5+4) (i+25+4) (i+33+4)
(5+3)  (+143)|(+1,7+3) (+25+3)|[(+25+3) (+3,5+3)|(+3.5+3) (+4,j+3)
(i +3) (5,0+2) (5+1,0+2) (i+3.0+3)
(i +3) (i+3,j+3)
(i +2) (s.t+1) (s +2.6+1) (i+4.5+2)
Gi+2) (i+3.5+2)
(i1 +2) (i+30+2)
(i +1) (1) (420 (i+45+1)
(i +1) (+3.5+1)
Gi+1) (s.8) (s+1.)
() G+ | G+

(i+3.5+1)
(i+2.3) | (+2.5) (i+3.) | (i+3. (i+4.3)
(@4) (i+1.5) (i+2.)

(i+3,7)
Grey cells: It seems we sit inside of the computation zone,

we make part of a huge computation!

Do
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A slot for a 2 x 2 patterns from the computation zone:

(irj+4) (i+1,j+4) (i+2,j+1) (i+3.5+4)

(7+3) (143 +17+3) (+2+3)|(+2)+3) (+3,7+3)

(+3,5+3) (i+4,j+3)

(i,j+3) (s,0+2) (s+1,0+2) (i+3.5+3)
(ij+3) (i+3.+3)

(i +2) (s.t+1) (s +2.6+1) (i+4.5+2)

(i,j+2) (i+3,j+2)

i +2) (i+3.5+2)
(i.3+1) (s.t) (s+2,1) (i+4,j+1)
(i,3+1) (i+3,5+1)
(Li+1) (s,1) (s+11) (i+3,j+1)

(i.4) (G +1) | i+ 1) (i+2.) | (i+2.) (i+3,9) | (i+3.4) (i+4.3)
(@4) (i+1.5) (i+2.) (i+3.5)

Grey cells: It seems we sit inside of the computation zone,
we make part of a huge computation!
White cells: Guys, you four are living in a small prison
in the middle of nowhere...

o = = = = 9ace
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hf\/gfl 6/2 — 1
= Y=, 0r 6/7°, or ) =i
n=1
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Theorem [Hochman—Meyerovitch| Every explicitly defined
number h > 0 is the entropy of some SFT on Z2.

e.g., there exist SFTs with entropies
o0

h= 51 or6/n or 21% or /7 + e, etc.
n=

Any number that can appear in real maths. And even slightly more.
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Theorem [Hochman—Meyerovitch] Every right recursively enumerable
number h > 0 is the entropy of some SFT on Z2.
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Theorem [Hochman—Meyerovitch] Every right recursively enumerable
number h > 0 is the entropy of some SFT on Z2.

Questions:

» Hochman—Meyerovitch: What about transitivity?

> Schraudner: What about some kind of (uniform) mixing?
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Theorem. Every right recursively enumerable number h > 0 is the
entropy of some weakly irreducible and transitive SFT on Z2.

Weakly irreducible: every two globally admissible finite patterns can be
combined in one infinite configuration (with a bounded distance).

Transitive: There exists a configuration that contains all globally
admissible finite patterns.
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v
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Sketch of the proof:

(step 1) construct a tileset 7 such that
> two types of tiles, blue and red
> guarantee that limsup|[density of red tiles| = h
> guarantee transitivity and weak irreducibility

> entropy(7) = 0.

(step 2) an SFT 7/ :

» make two copies of each red tile
Result:

> entropy(7') = h

> weak irreducibility: got for free

> transitivity: random instantiation of red tiles

26 /30
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technical trick: a self-simulating SFT with a growing zoom factor, s.t
» lim sup[density of red tiles] = h

» transitive and irreducibile

blue macro-tiles and red macro-tiles:

> most ground-level tiles in a blue macro-tile are blue

» most ground-level tiles in a red macro-tile are red

[m]

» the fraction red tiles in a red macro-tile approaches the limit

=

DA
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Hierarchical constructions: self-simulating vs Berger/Robinson's
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Hierarchical constructions: self-simulating vs Berger/Robinson's

self-simulating Robinson’s
tilings construction
undgC|dab|I|ty of  the n Berger'66
domino problem
tilings with only noncom- " Hanf-Myers'74

putable points

any effectively closed 1D
subshift is isomorphic to the
subdynamics of a 2D SFT

Durand—-R-Shen

Aubrun-Sablik

similar result for minimal

- ?

subshifts Durand-R .
inisti Kari, Papasoglu,
iitlgzn?y deterministic | Lokbarile »
¢ Gloannec, Ollinger

pairwise different  black Westrick )

squares in the white ocean




Hierarchical structures but no universal computation:
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Mozes’89: tilings simulate ‘rectangular’ substitution system

Goodman-Strauss’98: tilings simulate any geometric substitution
system

Non-hierarchical structure and non-universal computations:

Culik—Kari’96 + Jeandel-Rao’15:

> embedded simple finite automata (transducers),
> aperiodic tilings with very small number of tiles

» tilings with really interesting properties
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Take home messages:

» embedding a TM in a tiling can be useful even

if you do not care about computability

» self-simulating tilings is a flexible tool,
arguably the first (lazy) option to try

» for more subtle problems there exist trickier techniques

Thank you!
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