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Recognizing families of colorings

L ={0,m

Family of X-colorings
(subshift)

We recognize colorings of the discrete plane via local constraints.

Theorem [Mozes 89]. Colorings “generated by” (expansive) substitu-

tions are “recognizable”.
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Recognizing families of colorings

r={0,m}
I projection
Family of X-colorings Family of tilings
(subshift)

ggllj

XXX

Set of deterministic local rules (Wang tiles)

We recognize colorings of the discrete plane via local constraints.

Theorem([in CiE’12]. Colorings “generated by” 2 X 2 substitutions are

“deterministically recognizable”.
2/54



1. Tilings



Tilings by Wang tiles

A Wang tile is an oriented (no
rotations allowed) unit square tile
carrying a color on each side.

A tileset T is a finite set of Wang
tiles.

A configuration c © T
associates a tile to each cell of the
discrete plane Z2.

A tiling is a configuration where
the colors of the common sides of
neighboring tiles match.
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Historical context

1. Tilings

In the early 60s, H. Wang reduces the decidability problem of the
V3V class of first order logic formulas to a question of discrete
tiling.

Domino Problem, DP [Wang, 1961]. Given a tileset, is it possible to

tile the plane?

Theorem [Berger, 1964]. The Domino Problem is undecidable.

Proof by construction of an aperiodic tileset describing a self-similar
structure able to contain some Turing computations.

Aperiodicity. A tileset is aperiodic if it tiles the plane, but never in a
periodic way.

6/54



Deterministic tilesets

Introduced by J. Kari in 1991 to prove the undecidability of the
nilpotency problem for 1D cellular automata.

Notations: NW for North-West, SE pour South-East...

Deterministic tileset. A tileset T is NE-deterministic if for any pair
of tiles (ty, ts) € T2, there exists at most one tile t compatible to the
west with t,;, and to the south with ts.

g

Partial local map.

15T

We symmetrically define {NW,SE,SW}-determinism.
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Deterministic tilesets

Bideterminism. A tileset is bideterministic if it is simultaneously de-
terministic in two opposite directions: NE & SW, or NW & SE.

y.

Strong determinism. A tileset is strongly deterministic (4-way deter-
ministic) if it is simultaneously deterministic in the four directions NE,
NW, SW and SE.
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Deterministic tilesets: a short history

[Kari, 1991] introduced a (bi)determinization of [Robinson, 1971] to
treat the nilpotency problem for cellular automata in dimension 1
(Nil1D)...Already proven in [Aanderaa-Lewis 1974]?!

Theorem [Kari, 1991; Aanderaa-Lewis, 1974]. Nil1D is undecid-
able.

Theorem [Kari, 1991; Aanderaa-Lewis, 1974]. There exist some
(bi)deterministic aperiodic tilesets.

Rmk The 16 Wang tiles derived from Ammann’s geometric tiles are
bideterministic.

Theorem [Kari, 1991; Aanderaa-Lewis, 1974]. DP remains unde-
cidable for deterministic tilesets.
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Deterministic tilesets: a short history

1. Tilings

[Kari-Papasoglu, 1999] builds a strong determinization of
[Robinson, 1971].

Theorem [Kari-Papasoglu, 1999]. There exist some strongly deter-
ministic aperiodic tilesets.
[Lukkarila, 2009] introduces a strong determinization of [Robinson,

1971] + Turing computation.

Theorem [Lukkarila, 2009]. DP remains undecidable for strongly
deterministic tilesets.
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2. Colorings, subshifts and (directional) soficity



Colorings of the discrete plane

Given a finite alphabet X, a X-coloring of Z? is a map

c:7?— %

Z=-{ll N}
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Topology

The set Z%° of 2 -colorings is endowed with the product topology
over Z? of the discrete topology over L.

Theorem. Z% isa compact space.
Translation. Ve € L%, Vz,x € 72, 0,(c)(x) = c(x — z)

Subshift. A subshift Y C Y7 is a close and translation invariant
set of colorings.

Tilings. The set of tilings of a tileset T is a subshift.

2. Colorings, subshifts and (directional) soficity 14/54



2D Soficity

Soficity. A subshift Y C T2 is sofic if it can be obtained as the
alphabetic projection of the set of tilings . by a tileset T: Y =
(X,).

NK. HE
ME EE
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Directional soficity

Directional soficity. A subshift Y C Y2 is NW/NE/SW/SE-sofic if
it can be obtained as the alphabetic projection of the set of tiling X
by a NW/NE/SW/SE-deterministic tileset T.

N.B. Those colorings are generated by partial cellular automata of
dimension 1.

Motivation. Opens the doors for tools from dimension 1.

The colorings generated by substitutions are sofic.

Today... What about the directional case?
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3. Substitutions and soficity



Substitutions

Substitution. A (deterministic) substitution is a set of rules replacing
letters from a finite alphabet X by rectangles of letters over X.

g Fhk
=all

-+ rotations
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Limit set

What are the colorings generated by a substitution?

Limit set. Given a substitution s, we define its limit set:

A=N1(()),

n>0
The limit set is a subshift.
Proposition. The limit set exactly is the set of colorings ¢ admitting

a history: (c,) € % verifying ¢, = ¢ and Vn > 0, 3o, translation,
0, © S(Cn-H) = Cp-

3. Substitutions and soficity 19/54



Soficity of Ag

We want to force the hierarchical structure imposed by the
substitution using local rules.

Idea. Code the history of a coloring into the tilings.

Theorem [Mozes, 1989]. Limit sets of (expansive) substitutions are
sofic.

Seminal construction method for [Goodman-Strauss, 1998] and
[Fernique-O, 2010].

Theorem [104]. Limit sets of 2 X2 substitutions are sofic.

3. Substitutions and soficity 20/54
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Goodman-Strauss 1998

Theorem[Goodman-Strauss 1998]. The limit set of homothetic
substitution (+ some hypothesis) is sofic.

3. Substitutions and soficity 22/54



Fernique-O 2010
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Theorem[Fernique-O 2010]. The limit set of a combinatorial sub-

stitution (+ some hypothesis) is sofic.
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Is this self-encoding?

Iterating the coding rule one obtains 56 tiles.

2

coding rule

Unfortunately, this tile set is not self-coding.

Idea Add a synchronizing substitution as a third layer.
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a la Robinson

L
B &

+-3f ®

Proposition. The associated tile set of 104 tiles admits a tiling and
codes an unambiguous substitution.
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a la Robinson

Proposition. The associated tile set of 104 tiles admits a tiling and
codes an unambiguous substitution.
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104 in brief: 3 layers

Tileset T introduced in [104].

Layer 1: Parity.

Layer 2: Cables.

T = i
ECE

3. Substitutions and soficity 28/54
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104 in brief

Smallest fixed point of a 2x2
substitution scheme. —

Each macro-tile codes a tile.

104 is self-simulating for a 2x2
substitution s on tiles.

—
The limit set /A of s is aperiodic
and the set of tilings verifies
X C A,
Theorem [104]. —

104 is aperiodic.

29/54
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Soficity

Every tilings contains an infinite
quaternary tree hierarchical
structure.

For any 2 x 2 substitution s’ over
an alphabet X, we enrich T into a
tileset T(s’) such that:
< cables of the tree structure
carry letters of X ;
¢ new rules enforce the structure
to code the whole history of a
coloring of Ag.




4. Historical interlude



“(...) In 1966 R. Berger discovered the first aperiodic tile set. It
contains 20,426 Wang tiles, (...)

Berger himself managed to reduce the number of tiles to 104
and he described these in his thesis, though they were omitted
from the published version (Berger [1966)). (...)” [GrSh, p.5841



THE UNDECIDABILITY OF THE DOMINO PROBLEM

A thesis presented
by
Robert Berger
to
The Division of Engineering and Applied Physics
in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy
in the subject of

Applied Mathematics

Harvard University
Cambridge, Massachusetts
July 1964

Copyright 1964 by W 60\?0‘,

All rights reserved

APPENDIX II

A SIMPLER SOLVABLE DOMINO SET WITH NO TORUS

The skeleton set, K, analyzed in PART 3, is a solvable domino set
with no torus. Since it is designed to serve also as a base set for model-
ing of Turing machines, it is not surprising that simpler solvable, torus-
less domino sets exist. One such set, call it Q, is specified by Tables
9-12. The first three tables show the base, skeleton, and parity proto-
types of Q. Although these tables show symbols in the center of domino
edges, the base, skeleton, and parity channels should be thought of as
distinct. Table 12 serves the same function for Q as did Table 4 for K,
namely that of specifying which products of prototypes are permitted.
However, since Q is a fairly small set, it is not too cumbersome to
enumerate only those dominoes which are actually used in solutions of Q,
104 in all. (No concerted attempt has been made to find the smallest
solvable torus-less domino set.)

Figure 24 shows, separately, skeleton signals and parity signals in
the same portion of a solution of Q. If Figure 24 is rotated one-eighth
turn clockwise, its skeleton signals bear a strong resemblance to the
CD-signals of K.

A person who understands the skeleton set should have no trouble
convincing himself of the likelihood that all solutions of Q look line exten~

sions of Figure 24. The following hints will help.



1
A B
. Table 11
4 Parity Prototypes of Q
1
[ D
Table 9
N Base Prototypes of Q
>
E D ! 3 T
1
11 12 13 141
1 1 T
1
|
Iy
nou.
f same
line weight rnx‘ 1 2 4
a (aitrer nt)” 24
vertical :isml 21 22 .2-3..-. 2 2
no
anbiguity.
‘ : \
3 4
31 32 33 34
3 3
B 41 42 43 44
Table 10 - DR [ . Y 4
Skeleton Prototypes of Q B F
2 3 4



Base
/—Skeleton

Parity
. A BIC DI11 12]13 14|21 o0 23 24131 32[33 34[41 42 43

af8'x

8

L

TR

BL

R

B

F

N X|x x
HES

8

T

L x x *

TR X X |x x

B

R X x [x x X X [x x

B

F

N X x |x x X x |x x Ix x X
UES

]

T X _Xx X

L

TR

BL x x x x

R

B XX X _x X _x X X

F

N X X x |x x x_x x Ix x x
CIER

S |x

T X x |x

L x B3 x

TR X_x |x x

BL X b3 X X

R x x |x X x [x x

B X X X X X_x x_x

F X[xx

N X X Ix x|x x m mx x |x x |x x o x

Table 12 Prototype Products in Q




11,12

1314

0123456789101112131415 0, 1 2 3
H m s P} o Hefls
- ==y 1 !
2
— 3
m rm rm 4
o jun | jma 5
6
7
m r m 8
=n = 9
10
— 1
] m m m 12
| jmn | jma 13
14
15

Skeleton Signals

Figure 24

Part of the Solution of Q

Parity Signals



Berger’s skeleton substitution

Lo

4. Historical interlude
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Berger’s forgotten aperiodic tile set

Proposition. The associated tile set of 103 tiles admits a tiling and
codes an unambiguous substitution.

Remark. The number of tiles does not grow monotonically in the
number of letters of the synchronizing layer.

5 letters — 104 tiles
11 letters — 103 tiles
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5. Substitutions and directional soficity



Directional soficity of A

We want to force the hierarchical structure imposed by the
substitution using 4-way deterministic local rules.

In practice. Let’s adapt some (rather technical) existing constructions
coding the history of colorings into tilings to make them

deterministic.

In the following of this talk...

Theorem. Limit sets of 2 X2 substitutions are 4-way sofic.
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Directional soficity of A

Battle plan.

1.
2.
3
4.

5. Substitutions and directional soficity

We determinize 104 in the four directions simultaneously.
We determinize 104 + substitutions in one direction.
We bideterminize 104 + substitutions.

We strongly determinize 104 + substitutions.
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104-way
104 is not deterministic in any
direction.

How to chose between
H and V tiles in E positions?

Idea. Go & search for information
on the mother tile back in the his-

tory.

Need for:

& new constraints at radius 1 for
level 0 ;

<& new wires (carrying H/V/X
labels) to inferior levels.




/B | | T 1/l N | ‘IIH




104 1-way + Substitutions

We combine the strongly deterministic version of 104 with the
encoding of a substitution s’ on the quaternary tree.

Again, the obtained tileset is not deterministic in any direction!

Problem. For the NE direction, we do not know how to “predict” the
letter carried by cables of color w in NE position on X tiles.

Idea. In our construction, hereditary information is translated in the
SW direction. We could set up some wires to go & find it.

By Jove! We have already done something similar at the previous
step.
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104 2-way + Substitutions

We consider the cartesian product of the two 104 1-way +
substitution tilesets obtained from the following two symmetrical
substitution schemes.

- -

We synchronize the parity layer in order to code the same coloring
on the level 0 of both components.

The component 1 (resp. 2) is NE-deterministic (resp.
SW-deterministic).

We need to synchronize the whole history on both components.
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104 4-way + Substitutions

We consider this time the cartesian product of the four 104 1-way +
substitution tilesets obtained from the following four symmetrical
substitution schemes.

- .
- .

Similar analysis and same solution (3 X 3 grouping) as before.
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6. Going further



Conclusion and perspectives

We have considered the case of colorings generated by
deterministic 2 x 2 (and 2" x 2") substitutions.

This might be adapted for regular n X n substitutions.

General open question: What subshifts can be recognized in a
deterministic way?

L FHH

Universal

i o = 2

. s
machine B

program

Bi-deterministic version of [Durand-Romashchenko-Shen 08]
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That’s all folks!

Thank you for your
attention.
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