Coverability as local rule

Guilhem Gamard

Higher School of Economics, Moscow

Workshop on aperiodicity and hierarchical structures in tilings
26 September 2017
Introduction

- Σ an alphabet, e.g. $\{□, ■\}$

- **Colorings** of groups
 - In my case, \mathbb{Z} and \mathbb{Z}^2
Introduction

- \(\Sigma \) an alphabet, e.g. \(\{\square, \blacksquare\} \)
- **Colorings** of groups
 - In my case, \(\mathbb{Z} \) and \(\mathbb{Z}^2 \)
- **Local rules**
 - Wang tiles
 - Forbidden patterns
Introduction

- Σ an alphabet, e.g. $\{\Box, \blacksquare\}$

- **Colorings** of groups
 - In my case, \mathbb{Z} and \mathbb{Z}^2

- **Local rules**
 - Wang tiles
 - Forbidden patterns

- **Notions of regularity**
 - Periodicity
 - Repetitivity
 - Existence of frequencies
 - Entropy
• Σ an alphabet, e.g. $\{\square, ■\}$

• **Colorings** of groups
 - In my case, \mathbb{Z} and \mathbb{Z}^2

• **Local rules**
 - Wang tiles
 - Forbidden patterns

• **Notions of regularity**
 - Periodicity
 - Repetitiveness
 - Existence of frequencies
 - Entropy

• **Coverability**
"Coverable" vs. "Quasiperiodic"

Warning

Quasiperiodic has different meanings in different communities.

Combinatorics on words: quasiperiodic = coverable
Tilings and dynamics: quasiperiodic = repetitive

I coined the term “coverable” to resolve this ambiguity.

But it is not standard in the literature.
Plan

1. Introduction
2. Coverability in \mathbb{Z}
3. Coverability in \mathbb{Z}^2
4. Forcing entropy with covers
5. Multi-scale coverability
1. Introduction

2. Coverability in \mathbb{Z}

3. Coverability in \mathbb{Z}^2

4. Forcing entropy with covers

5. Multi-scale coverability
Let w, q be words (q is finite).

Definition

The word q is a **cover** of w if w is covered with copies of q.

- w finite or infinite
- $q \neq w$
- q prefix of w
Let w, q be words (q is finite).

Definition

The word q is a *cover* of w if w is covered with copies of q.

- w finite or infinite
- $q \neq w$
- q prefix of w

Definition

- **Coverable** = has a cover
- **Superprimitive** = no covers
Previous work on coverability

Text algorithms (1990’s)
- Definition
- Detection algorithms
- Normal form

Infinite words (2000’s)
- Definition, questions
- Independence results
- Multi-scale case

Characterization of covers…
- … of Sturmian words
- … of Episturmian words

Combinatorics (2016)
- Tools to determine covers
- Characterize periodic words…
- …and standard Sturmian words

On \(\mathbb{Z}^2 \) (2015, 2017)
- Knowing “trivial” covers
- Independence results
- Multi-scale case
Normal form of coverable words

Two possibilities:
1. \(q \)
2. \(q \)

Theorem (Mouchard, 2000)
A word is \(q \)-coverable iff it is a concatenation of \(q \)-antiborders, starting with \(q \).

Border: prefix + suffix
Antiborder: right complement of a border
Normal form of coverable words

Two possibilities:

1. \(q\) \(\{\)
 \[
 \begin{array}{ccccccc}
 & & & & & & \\
 & & & & & & \\
 & & & & & & \\
 & & & & & & \\
 \end{array}
 \]
 \(q\) \(\}\)

2. \(q\) \(\{\)
 \[
 \begin{array}{ccccccc}
 & & & & & & \\
 & & & & & & \\
 & & & & & & \\
 & & & & & & \\
 \end{array}
 \]
 \(q\) \(\}\)

Theorem (Mouchard, 2000)

A word is \(q\)-coverable iff it is a concatenation of \(q\)-antiborders, starting with \(q\).
Two possibilities:

1. \(q \) \(\text{border} \) \(\text{antiborder} \)

2. \(q \) \(\text{antiborder} \)

Theorem (Mouchard, 2000)

A word is \(q \)-coverable iff it is a concatenation of \(q \)-antiborders, starting with \(q \).
Normal form of coverable words

Two possibilities:

1. \(q \)
 \[\square \square \square \square \square \quad \square \square \square \square \square \]

2. \(q \)
 \[\square \square \square \square \square \quad \square \square \square \square \square \]
 \[\text{border} \]
 \[\square \square \square \square \square \quad \square \square \square \square \square \]
 \[\text{antiborder} \]

Theorem (Mouchard, 2000)

A word is \(q \)-coverable iff it is a concatenation of \(q \)-antiborders, starting with \(q \).

- **Border**: prefix + suffix
- **Antiborder**: right complement of a border
Substitutions from covers

Fix a word q, say with n antiborders.

Definition

$\mu_q(i)$ is the i^{th} antiborder of q
(by decreasing size)

Example

$q = □■□■□■□□□$

$\mu_q(0) = □■□■□□□□$

$\mu_q(1) = ■□□□□□□$

$\mu_q(2) =$

■□□□□□
Substitutions from covers

Fix a word q, say with n antiborders.

Definition

$q(i)$ is the i^{th} antiborder of q (by decreasing size)

Now view q as a substitution $\{0, \ldots, n-1\}^* \rightarrow \Sigma^*$.

Example

\[
q = \begin{array}{c}
\text{□■□■□■□■□□}
\end{array}
\]

\[
q(0) = \begin{array}{c}
\text{□■□■□■□■□□}
\end{array}
\]

\[
q(1) = \begin{array}{c}
\text{■□■■□■□□}
\end{array}
\]

\[
q(2) = \begin{array}{c}
\text{■■□■□□}
\end{array}
\]
Fix a word \(q \), say with \(n \) antiborders.

Definition

\[\mu_q(i) \] is the \(i \)\(^{\text{th}} \) antiborder of \(q \)
(by decreasing size)

Now view \(\mu_q \) as a substitution
\(\{0, \ldots, n-1\}^* \to \Sigma^* \).

Example

\[q = \text{□■□■■□■□} \]
\[\mu_q(0) = \text{□■□■■□■□} \]
\[\mu_q(1) = \text{■□■■□■□} \]
\[\mu_q(2) = \text{■■□■□} \]

Theorem (Mouchard, 2000)

A word \(w \) is \(q \)-coverable iff
\[\exists u \text{ such that } w = \mu_q(0 \cdot u) \]
Remark

For most q, μ_q preserves interesting properties

For instance,

- Non-repetitivity
- Positive entropy
- Divergence of frequencies

Thus we can create

irregular coverable words
Remark
For most q, μ_q preserves interesting properties

For instance,
- Non-repetitivity
- Positive entropy
- Divergence of frequencies

Thus we can create
irregular coverable words

[Marcus, Monteil 2006]
If \(q = \square \), there is only one \(q \)-coverable word: \(\square^\mathbb{Z} \).
If $q = \square$, there is only one q-coverable word: $\square^\mathbb{Z}$.

Theorem

*If μ_q is not injective (on infinite words) then $\forall u, \mu_q(u) = q^\mathbb{Z}$.***

We have a **dichotomy**:

- either there exist irregular q-coverable words,
- or all q-coverable words are periodic.

Besides, injectivity of μ_q is equivalent to an easy combinatorial condition on q. (More on this later.)
Plan

1. Introduction
2. Coverability in \(\mathbb{Z} \)
3. Coverability in \(\mathbb{Z}^2 \)
4. Forcing entropy with covers
5. Multi-scale coverability
A configuration is a coloring of \mathbb{Z}^2. A block is a coloring of a finite rectangle.

Definition

Let q be a block. A configuration w is q-coverable if it is covered with copies of q.
Notions of regularity

Definitions

- **Block complexity**
 \[P_w(m, n) = \# \text{ blocs } (m, n) \text{ in } w \]

- **Entropy**
 \[\text{Ent}(w) = \lim \log(P_w(n, n))/n^2 \]

- **Block frequencies**
 \[f_w(b) = \text{average number of } b-\text{occurrences per cell} \]

- **Repetitiveness**
 Each block occurs \(\infty\) often with bounded gaps

Plan

Show that **coverability is independent of these**...
... but we have **no more normal form!**
Ruling out “trivial” covers

The cover □ only allows □^Z^2.
Ruling out “trivial” covers

The cover □ only allows □^\mathbb{Z}^2.

Theorem (Richomme and G.)

Let \(q \) be a block. There exists an aperiodic, \(q \)-coverable configuration iff the primitive root of \(q \) has a nonempty border.
Ruling out “trivial” covers

The cover □ only allows □_{\mathbb{Z}^2}.

Theorem (Richomme and G.)

Let \(q \) be a block. There exists an aperiodic, \(q \)-coverable configuration iff the primitive root of \(q \) has a nonempty border.

Ideas of the proof

1. If the root has no border, all overlaps are multiples of the root
2. Build tiles from \(q \) and freely tile the plane

Border
Block in two opposite corners

Primitive root
Unique minimal \(\nu \) such that \(u = \nu^{m \times n} \)
Ruling out “trivial” covers

The cover □ only allows □ \(\mathbb{Z}^2 \).

Theorem (Richomme and G.)

Let \(q \) be a block.
There exists an aperiodic, \(q \)-coverable configuration iff the primitive root of \(q \) has a nonempty border.
Ruling out “trivial” covers

The cover □ only allows □\(\mathbb{Z}^2\).

Theorem (Richomme and G.)

Let \(q\) be a block.

There exists an aperiodic, \(q\)-coverable configuration iff the primitive root of \(q\) has a nonempty border.

Ideas of the proof

1. If the root has no border, all overlaps are multiples of the root
2. Build tiles from \(q\) and freely tile the plane
The tiles

Coverability as local rule
Coverable configurations

Remark

\(f(w) \) is defined for \(w \in \{a, b, c, d\}^\mathbb{Z}^2 \)
only if \(w \) satisfies some local rules
(More about this on the next slide)

Proposition (Richomme and G.)

\(\forall w, f(w) \) is \(q \)-coverable if it exists
Moreover, \(f \) preserves
- periodicity
- repetitivity
- existence of frequencies
Local rules and entropy

Remark

There are configurations
- aperiodic
- non-repetitive
- without frequencies
and matching these rules.

Remark

The rules force zero entropy.

Which covers allow positive entropy?
1. Introduction
2. Coverability in \mathbb{Z}
3. Coverability in \mathbb{Z}^2
4. Forcing entropy with covers
5. Multi-scale coverability
Fix some block \(q \).

What we want

Conditions on \(q \) implying

1. zero entropy for all configurations
2. positive entropy for some configurations which are \(q \)-coverable.

Tool: interchangeable pairs
Fix some block q.

What we want

Conditions on q implying

1. zero entropy for all configurations
2. positive entropy for some configurations which are q-coverable.

Tool: interchangeable pairs

Definition

An interchangeable pair is a pair of q-coverable patterns with the same shape. (Not always rectangles.)

Definition

An interchangeable pair is **valid** if its shape can tile the plane.
Fix a cover q and let $h = \max\{\text{Ent}(w), \ w \text{ is } q-\text{coverable}\}$.

Theorem

- If there is a *valid* pair for q, then $h > 0$.
- If there is no valid pair for q, then $h = 0$.

Let u be a configuration with positive entropy. Consider $\mu(u)$.

- Let v be an $n \times n$-square in a q-coverable configuration w.
- Let \bar{v} be the smallest q-coverable pattern in w containing v.
- Then v is determined by the shape of \bar{v} and coordinates.
- We have less than $|\Sigma|^{4n|q|} \times n^2$ possibilities.
Lemma 1
Any cover with full-width or full-height border allows positive entropy.

Guilhem Gamard
Coverability as local rule
Lemma 1
Any cover with full-width or full-height border allows positive entropy.

Lemma 2
Any cover with one of these shapes allows positive entropy.
Covers allowing positive entropy

Lemma 1
Any cover with full-width or full-height border allows positive entropy.

Lemma 2
Any cover with one of these shapes allows positive entropy.

\[
\begin{array}{c|c}
 a & b \\
 b & a \\
\end{array}
\]

Guilhem Gamard

Coverability as local rule
A sufficient condition for zero entropy

Theorem (Richomme and G.)
If q has a corner without borders, then any q-coverable configuration has zero entropy.

Example
Suppose there are no overlaps like:

```
+---+
|   |
+---+
```

What occurrences are covering the α's?
A sufficient condition for zero entropy

Theorem (Richomme and G.)
If \(q \) has a corner without borders, then any \(q \)-coverable configuration has zero entropy.

Example
Suppose there are no overlaps like:

There are three cases.
A sufficient condition for zero entropy

Theorem (Richomme and G.)

If q has a corner without borders, then any q-coverable configuration has zero entropy.

Example

Suppose there are no overlaps like:

What occurrences are covering the α’s?
Theorem (Richomme and G.)

If q has a corner without borders, then any q-coverable configuration has zero entropy.

Example

Suppose there are no overlaps like:

The occurrence covering α is unique in all cases.
A sufficient condition for zero entropy

Theorem (Richomme and G.)
If q has a corner without borders, then any q-coverable configuration has zero entropy.

Example
Suppose there are no overlaps like:

The occurrence covering α is unique in all cases.

\Rightarrow the shape of a q-coverable pattern determines the pattern itself.
A sufficient condition for zero entropy

Theorem (Richomme and G.)
If \(q \) has a corner without borders, then any \(q \)-coverable configuration has zero entropy.

Example
Suppose there are no overlaps like:

The occurrence covering \(\alpha \) is unique in all cases.

\[\implies \text{the shape of a } q\text{-coverable pattern determines the pattern itself} \]
\[\implies \text{no interchangeable pairs} \]
Lemma

Suppose \(q \) has no pairs of borders \((a, b)\) such that

\[
\begin{align*}
 w(a) + w(b) & \geq w(q) \quad \text{or} \\
 h(a) + h(b) & \geq h(q)
\end{align*}
\]

then any \(q \)-coverable configuration has zero entropy.

Not

\[
\begin{array}{c}
 a \\
 b \\
 a
\end{array}
\]
Lemma

Suppose \(q \) has no pairs of borders \((a, b)\) such that

\[
\begin{align*}
w(a) + w(b) & \geq w(q) \\
h(a) + h(b) & \geq h(q)
\end{align*}
\]

then any \(q \)-coverable configuration has zero entropy.

Proof

Same ideas as previous proof, but more cases to check.
Recap about entropy

We have

\[
\begin{array}{c|c}
 a & b \\
 b & a \\
\end{array}
\quad \Rightarrow \quad \text{positive entropy}
\]

Not

\[
\begin{array}{c|c}
 a & b \\
 b & a \\
\end{array}
\quad \Rightarrow \quad \text{zero entropy}
\]

Not quite an “if and only if”, but we’re getting close.

Remark

The duality in 1D does not apply in 2D: the cover have aperiodic configurations, but all with zero entropy.
1. Introduction

2. Coverability in \mathbb{Z}

3. Coverability in \mathbb{Z}^2

4. Forcing entropy with covers

5. Multi-scale coverability
Definition

A word, configuration is **multi-scale coverable** if it has infinitely many covers (growing in all directions).

Repetitivity

Zero Entropy

Existence of frequencies

Good notion of regularity

[Marcus, Monteil 2006]
Definition

A \{\text{word, configuration}\} is \textbf{multi-scale coverable} if it has infinitely many covers (growing in all directions).

- **Multi-scale** implies:
 - Repetitivity
 - Zero Entropy
 - Existence of frequencies

[Marcus, Monteil 2006]
Multi-scale coverability

Definition
A word, configuration \(g \) is **multi-scale coverable** if it has infinitely many covers (growing in all directions).

- **Multi-scale** implies:
 - Repetitivity
 - Zero Entropy
 - Existence of frequencies

- **Good notion of regularity**

[Marcus, Monteil 2006]
Reminder (Marcus and Monteil)

Any **1D** multi-scale word has
- Repetitivity
- Zero entropy
- Existing frequencies

Question

What about multi-scale configurations?

Theorem (Richomme and G.)

Any multi-scale configuration has
- Zero entropy
- Existing frequencies

Proof sketch

1. Direct adaptation of 1D proof
2. Lots of calculations
Multi-scale coverability in 2D

Reminder *(Marcus and Monteil)*

Any 1D multi-scale word has
- Repetitivity
- Zero entropy
- Existing frequencies

Question

What about multi-scale configurations?

Theorem *(Richomme and G.)*

Any multi-scale configuration has
1. Zero entropy
2. Existing frequencies
Multi-scale coverability in 2D

Reminder (Marcus and Monteil)

Any **1D** multi-scale word has
- Repetitivity
- Zero entropy
- Existing frequencies

Question

What about multi-scale configurations?

Theorem (Richomme and G.)

Any multi-scale configuration has
1. Zero entropy
2. Existing frequencies

Proof sketch

1. Direct adaptation of 1D proof
2. Lots of calculations
Repetitivity of multi-scale configurations

Guilhem Gamard

Coverability as local rule
Repetitivity of multi-scale configurations
Conclusion

- **Coverability** comes from the study of finite and \mathbb{Z}-words
- On \mathbb{Z}^2: characterization of *trivial* covers
- Ongoing characterization of *covers forcing zero entropy*
- **Multi-scale coverability** is a good notion of regularity

Many possible extensions:
- as a local rule
- as a notion of regularity

Thank you for your attention!