Random walks on graphs induced by aperiodic tilings

Basile de Loynes

September, 27th

- 2 Cut-and-project method
- 3 Recurrence/Transience
- Asymptotic entropy

Seminal paper, Pólya, 1921 (Undirected) Graphs and random walks Some examples

Seminal paper, Pólya, 1921

- $S = \{\pm \varepsilon_i : i = 1, \dots, i = d\} \subset \mathbb{Z}^d$
- $\{\xi_k\}_{k\geq 1}$ a sequence of independent and identically distributed r.v. with common distribution $\mathbb{P}(\xi_1 = \pm \varepsilon_i) = 1/2d$

•
$$S_n = x + \sum_{k=1}^n \xi_k$$

Question : What can we say about the probability

$$p = \mathbb{P}(S_n = x \text{ for infinitely many } n)$$
?

Answer (partial) :

if
$$d = 1, 2$$
 $p = 1$ and $p = 0$ otherwise

Remark : By construction, the random walk is homogeneous in the sense that

$$\forall y \in \mathbb{Z}^d : \mathcal{L}(y + S_{n+1}|y + S_n) = \mathcal{L}(S_{n+1}|S_n)$$

Motivation : break the symmetries of the lattice

Seminal paper, Pólya, 1921 (Undirected) Graphs and random walks Some examples

(Undirected) graphs and random walks

An undirected graph is a couple (V, E) where

- V is a countable set of *nodes*;
- 2 *E* is a set of *unordered pairs* $\{x, y\}$ with $(x, y) \in V \times V$.

The *degree*, deg x, of a nodes $x \in V$ is card $\{y \in V : \{x, y\} \in E\}$.

Generally, it is assumed that the graph (V, E) is *connected*, *locally finite* and *uniformly bounded* which corresponds respectively to

- for all x, y ∈ V there exists a path (z₀ = x, z₁,..., z_n = y) of nodes s.t. {z_i, z_{i+1}} ∈ E for i = 0,..., n − 1,
- each arr and a each arr a each
- $\ \, {\rm Sup}_{x\in V} \deg \, x < \infty.$

Seminal paper, Pólya, 1921 (Undirected) Graphs and random walks Some examples

Random walks on graphs

A random walk on a graph (V, E) is a Markov chain $(M_n)_{n\geq 0}$ taking values in V whose transition kernel is adapted to the graph structure, *i.e.* for all $x, y \in V$:

$$P(x,y) > 0 \Longleftrightarrow \{x,y\} \in E.$$

A random walk on a graph is said to be *simple* if the transition kernel is given for all $x, y \in V$ by

$$P(x,y) = \begin{cases} \frac{1}{\deg(x)} & \text{if } \{x,y\} \in V, \\ 0 & \text{otherwise.} \end{cases}$$

Seminal paper, Pólya, 1921 (Undirected) Graphs and random walks Some examples

Example 1 : homogeneous spaces

Let us denote by

- $\mathfrak{S}(V)$ the group of permutations of V,
- Aut(P) = { $g \in \mathfrak{S}(V)$: $\forall x, y \in \mathbb{G}^0, P(g \cdot x, g \cdot y) = P(x, y)$ } the group of automorphism of P.

The Markov chain on V with transition kernel P is said homogeneous if the action of $Aut(P) \frown V$ is transitive.

Homogeneous MC \leadsto RW on the group of automorphisms

Up to symmetries, they are processes with independent and stationnary increments

Seminal paper, Pólya, 1921 (Undirected) Graphs and random walks Some examples

Example 2 : triangulations of planar surface

FIGURE: Patch of a triangulation

Theorem (Dodziuk, 1984)

If for some $d \ge 0$

 $7 \leq \deg(x) \leq d$

for all $x \in V$, then the simple random walk is transient.

Seminal paper, Pólya, 1921 (Undirected) Graphs and random walks Some examples

Example 3 : circle packing of the plane

FIGURE: Circle packing

Theorem

If $deg(x) \le 6$ for all but finitely many points x, then the simple random walk is recurrent.

Introduction

Cut-and-project method Recurrence/Transience Asymptotic entropy Seminal paper, Pólya, 1921 (Undirected) Graphs and random walks Some examples

Example 3 : Circle packing of the plane

FIGURE: Circle packing

Theorem

If $deg(x) \le 6$ for all but finitely many points x, then the simple random walk is recurrent.

Penrose tiling Cut-and-project method Example

Third Penrose tiling

FIGURE: Third Penrose tiling

Two prototiles :

- a fat rhombus (angles of measure $2\pi/5$ and $3\pi/5$),
- a thin rhombus (angles of measure π/5 and 4π/5).

together with matching rules

 $\stackrel{\Downarrow}{\downarrow}$ Aperiodic tiling of \mathbb{R}^2

Penrose tiling Cut-and-project method Example

Third Penrose tiling

FIGURE: Third Penrose tiling

Two prototiles :

- a fat rhombus (angles of measure $2\pi/5$ and $3\pi/5$),
- a thin rhombus (angles of measure $\pi/5$ and $4\pi/5$).

together with matching rules

 $\stackrel{\Downarrow}{\downarrow}$ Aperiodic tiling of \mathbb{R}^2

Penrose tiling Cut-and-project method Example

FIGURE: Linear tiling

$$\mathbb{Z}^2\subset\mathbb{R}^2$$
 ,

- E a vector line with $E \cap \mathbb{Z}^2 = \{0\},\$
- *E'* the orthogonal supplement of *E*,
- *K* the unit cube of \mathbb{Z}^2

• the strip
$$\mathscr{K}_t = K + E + t$$
,
 $t \in E'$.

Orthogonal projection of edges entirely contained in the strip \Downarrow Aperiodic tiling of *E* with short and long segments

Penrose tiling Cut-and-project method Example

Main goal : tile a *d*-dimensional vector subspace $E \subset \mathbb{R}^N$

- $\mathbf{S} \quad \mathcal{K} = \{\sum_{i=1}^{N} \lambda_i \varepsilon_i : \lambda_i \in [0, 1], 1 \le i \le N\},$ $\mathbf{S} \quad \mathcal{M}_d = \left\{ I = \{i_1, \cdots, i_d\} \subset \{1, \cdots, N\} \right\},$
- $K_{I^{C}}$ denotes the supplementary facet of K_{I} in the unit cube K,

•
$$D_I = \pi(K_I)$$
 et $D'_I = \pi'(K_{I^{C}})$,

• **NDEG assumption :** *d*-dimensional facets of $K \cong D_I$ & (N - d)-dimensional facets of $K \cong D'_I$.

Penrose tiling Cut-and-project method Example

Theorem (Oguey, Duneau and Katz)

For $t \in E'$, we set

$$\mathcal{T}_t = \left\{ x + D_I : x = \pi(\xi), \xi \in \mathbb{Z}^N : \pi'(\xi + K_I) \subset \pi'(K) + t, I \in M_d \right\}$$

Theorem (Oguey, Duneau, Katz, 1988)

The \mathcal{T}_t is a tiling of $E \cong \mathbb{R}^d$ for all $t \in E'$ generic (or non ambiguous).

Remarks :

- Meaning : there exists a unique *d*-dimensional faceted manifold entirely contained in the strip *ℋ*_t (for any generic t ∈ E');
- **2** group of translations of the tiling : $E \cap \mathbb{Z}^N$.

Penrose tiling Cut-and-project method Example

Examples

Example 1, the third Penrose tiling : In \mathbb{R}^5 , set $E = \text{Span}(v_1, v_2)$ with

$$v_1 = (1, \cos(2\pi/5), -\cos(\pi/5), -\cos(\pi/5), \cos(2\pi/5))$$

$$v_2 = (0, \sin(2\pi/5), \sin(\pi/5), -\sin(\pi/5), -\sin(2\pi/5))$$

Example 2, icosahedral tiling of \mathbb{R}^3 : In \mathbb{R}^6 , set $E = \text{Im } \pi$ of dimension 3 with

$$\pi = \frac{1}{2\sqrt{5}} \begin{bmatrix} \sqrt{5} & 1 & -1 & -1 & 1 & 1\\ 1 & \sqrt{5} & 1 & -1 & -1 & 1\\ -1 & 1 & \sqrt{5} & 1 & -1 & 1\\ -1 & -1 & 1 & \sqrt{5} & 1 & 1\\ -1 & -1 & -1 & 1 & \sqrt{5} & 1\\ 1 & 1 & 1 & 1 & 1 & \sqrt{5} \end{bmatrix}$$

Main theorem An extension of Hof's theorem Isoperimetric inequalities

FIGURE: Third Penrose tiling

Main theorem An extension of Hof's theorem Isoperimetric inequalities

FIGURE: Third Penrose tiling

Main theorem An extension of Hof's theorem Isoperimetric inequalities

Theorem

Let $N > d \ge 1$. Under assumption **NDEG**, for almost all $t \in E'$ non ambiguous, the following estimates holds :

- $P^{2n}(x,x) \ge C_1[n(\log n)]^{-d/2}$,
- $P^n(x,y) \le C_2 n^{-d/2}$,

for some constants $C_1, C_2 > 0$.

Corollary

Under the same assumptions, the simple random walk on the cut-and-project graph is recurrent for d = 1, 2 and transient otherwise.

Obviously, if d = 1, $P^{2n}(x, x) \sim_{n \to \infty} C_3 n^{-1/2}$, this is the simple random walk on the integers.

Main theorem An extension of Hof's theorem Isoperimetric inequalities

Theorem

Let $t = t_E + t_{E'} \in \mathbb{R}^N = E \oplus E'$ with dim E = d. Then, under the assumption **NDEG**, there exists an almost everywhere positive function ℓ on E' satisfying

$$\lim_{r\to\infty}\frac{\mathsf{card}\bigg(\mathbb{Z}^N\cap(t+B_{\mathbb{R}^d}(0,r)+K)\bigg)}{\mathsf{Leb}(B_{\mathbb{R}^d}(0,r))}=\ell(t_{E'}),\quad \textit{a.e.}.$$

- This theorem allows to compare the growth rate of balls and spheres in the cut-and-project graph embedded in E ≅ ℝ^d with the growth rate of balls and spheres in de ℝ^d.
- The Hof's theorem (1998) suppose in addition that E' ∩ Z^N = {0}. In this case, ℓ is constant and the convergence is uniform.

Main theorem An extension of Hof's theorem Isoperimetric inequalities

Isoperimetric inequalities

Proposition

Under assumption NDEG, there exists a constant K > 1 such that for all $x \in \mathbb{G}^0$

$$\mathcal{K}^{-1}\ell^d \leq \operatorname{card} B_{\mathbb{G}}(x,\ell) \leq \mathcal{K}\ell^d.$$

Proposition

Under assumption **NDEG**, the graph \mathbb{G} satisfies a d-dimensional isoperimetric inequality, i.e. there exists K > 0 such that

 $\operatorname{card} B_{\mathbb{G}}(x,\ell) \leq K \operatorname{card} \partial B_{\mathbb{G}}(x,\ell)^{d/d-1}.$

uniformly in $x \in \mathbb{G}^0$.

Markov additive process Random walks on groups and entropy

- Let $\mathbb{R}^N = E \oplus E'$ with dim E = d < N and $E' \perp E$.
- For simplicity, assume that $E' \cap \mathbb{Z}^N = \{0\}$ and $E \cap \mathbb{Z}^N = \{0\}$.
- Then, π and π' , when restricted to \mathbb{Z}^N , are injective.
- Let $t \in E'$ be non ambiguous.
- Recall the definition of \mathcal{T}_t

$$\mathcal{T}_t = \left\{ x + D_I : x = \pi(\xi), \xi \in \mathbb{Z}^N : \pi'(\xi + K_I) \subset \pi'(K) + t, I \in M_d \right\}$$

 Let ξ ∈ Z^N ∩ ℋ, then the set of admissible neighbours is entirely defined through a local rule : π'(ξ) ~ π'(η) iff

$$|\xi - \eta|_1 = 1$$
 and $\exists ilde{\eta}, I: \xi, \eta \in ilde{\eta} + {\mathcal K}_I$ and $\pi'(ilde{\eta} + {\mathcal K}_I) \subset \pi'({\mathcal K}) + t$

- Forget the cut-and-project method.
- The local rule remains and defines a Markov chain Q on $\pi'(K) \subset E'$.
- The distribution of steps is uniform on admissible neighbours.
- Each admissible move in π'(K) corresponds to a move along exactly one ±ε_i.
- If m(x) denotes the number of admissible neighbours of $x \in \pi'(K)$, then

$$\pi(dx) = \mathbf{1}_{\pi'(K)}(x)m(x)\lambda(dx)$$

is a finite invariant measure for Q.

Summarizing : estimate the entropy of a Markov additive process with invariant probability measure and work a little bit to conclude.

Markov additive process Random walks on groups and entropy

Markov additive processes

Let S be a state space and Q a transition kernel on S. We are given a family on probability measures $(\mu^{x,y})_{x,y\in\mathbb{S}}$ on \mathbb{Z}^N .

Definition

A Markov additive process is a Markov chain $((X_n, Z_n))_{n\geq 0}$ taking values in $\mathbb{S} \times \mathbb{Z}^N$ whose Markov operator is given by

$$extsf{Rf}(x,z) = \sum_{y\in\mathbb{S},z'\in\mathbb{Z}^N} Q(x,y) \mu^{x,y}(z') f(y,z+z'),$$

for $x \in \mathbb{S}$ et $z, z' \in \mathbb{Z}^N$ and $f \in \ell^{\infty}(\mathbb{S} \times \mathbb{Z}^N)$.

• $\mathcal{L}(X_n, Z_n - Z_{n-1} | (X_{n-1}, Z_{n-1}))$ only depends on X_{n-1} ;

• *R* commutes with the translations in \mathbb{Z}^N .

Markov additive process Random walks on groups and entropy

The simple case of entropy on groups

Let Γ be finitely generated group, S a symmetric finite set of generators (semigroup) and μ a probability supported by S.

Let $g \in \Gamma$ and $\{X_n\}_{n \ge 1}$ be an *i.i.d.* sequence of Γ -valued random variable, the (right) random walk of law μ is defined as

$$Z_n = g X_1 \cdots X_n, \quad n \ge 1.$$

Markov additive process Random walks on groups and entropy

Definition (Shannon entropy)

The Shannon entropy of μ is given by

$$H(\mu) = -\sum_{g\in \Gamma} \mu(g) \log \mu(g).$$

Definition (Asymptotic entropy)

Denoting by μ^n the n-fold convolution of μ , the asymptotic entropy of the μ -random walk on Γ is given by

$$h = \lim_{n \to \infty} H(\mu^n) - H(\mu^{n-1}) = \lim_{n \to \infty} \frac{H(\mu^n)}{n}.$$

Markov additive process Random walks on groups and entropy

Shannon-McMillan-Breiman theorem

For each n ≥ 1, X_n : Γ^{N*} ∋ ω → X_n(ω) = ω_n ∈ Γ,
let T be the Bernoulli shift on (Γ^{N*}, μ^{N*}).

Then, for any $n, m \in \mathbb{N}^*$, using Γ -invariance

$$\mu^{n+m}(X_1\cdots X_n X_{n+1}\cdots X_m) \geq \mu^n(X_1\cdots X_n)\mu^m(X_{n+1}\cdots X_m)$$

Thus, $\omega \longrightarrow -\log \mu^n(Z_n(\omega))$ is a non negative subadditive cocycle and Kingmann subadditive theorem implies a SMB type result

$$\lim_{n\to\infty} -\frac{1}{n}\log\mu^n(Z_n) = \lim_{n\to\infty} \frac{1}{n} \mathbf{E}(-\log\mu^n(Z_n)) = h \quad \text{a.s.}.$$

Markov additive process Random walks on groups and entropy

Fundamental inequality

Let *d* be the geodesic metric on (Γ, S) and define (using Kingmann subadditive theorem again) the escape rate

$$\lim_{n\to\infty}\frac{1}{n}d(e,Z_n)=\lim_{n\to\infty}\frac{1}{n}\mathbf{E}[d(e,Z_n)]=\ell,\quad\text{a.s.}.$$

The fundamental inequality is an easy consequence of the SMB theorem :

$$h \leq \ell \cdot v$$
, with $v = \lim_{n \to \infty} \frac{1}{n} \log \operatorname{card} B_d(e, n)$.

For \mathbb{Z}^N , v = 0.

Markov additive process Random walks on groups and entropy

For Markov additive processes

Substitute the Bernoulli shift by the Markov shift

Adapt the definition of entropy and escape rate to the additive component

In fact : proved in Kaimanovich, Kiefer, Rubhstein (2004)

Deal with the fact the cut-and-project Markov shift is not ergodic!

Markov additive process Random walks on groups and entropy

Thank you!