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Seminal paper, Pólya, 1921

S = {±εi : i = 1, . . . , i = d} ⊂ Zd

{ξk}k≥1 a sequence of independent and identically distributed
r.v. with common distribution P(ξ1 = ±εi ) = 1/2d
Sn = x +

∑n
k=1 ξk

Question : What can we say about the probability

p = P(Sn = x for infinitely many n)?

Answer (partial) :

if d = 1, 2 p = 1 and p = 0 otherwise

Remark : By construction, the random walk is homogeneous in
the sense that

∀y ∈ Zd : L(y + Sn+1|y + Sn) = L(Sn+1|Sn)

Motivation : break the symmetries of the lattice
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(Undirected) graphs and random walks

An undirected graph is a couple (V ,E ) where

1 V is a countable set of nodes ;

2 E is a set of unordered pairs {x , y} with (x , y) ∈ V × V .

The degree, deg x , of a nodes x ∈ V is card {y ∈ V : {x , y} ∈ E}.

Generally, it is assumed that the graph (V ,E ) is connected, locally
finite and uniformly bounded which corresponds respectively to

1 for all x , y ∈ V there exists a path (z0 = x , z1, . . . , zn = y) of
nodes s.t. {zi , zi+1} ∈ E for i = 0, . . . , n − 1,

2 deg x <∞ for all x ∈ V ,

3 supx∈V deg x <∞.
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Random walks on graphs

A random walk on a graph (V ,E ) is a Markov chain (Mn)n≥0

taking values in V whose transition kernel is adapted to the graph
structure, i.e. for all x , y ∈ V :

P(x , y) > 0⇐⇒ {x , y} ∈ E .

A random walk on a graph is said to be simple if the transition
kernel is given for all x , y ∈ V by

P(x , y) =

{ 1
deg (x) if {x , y} ∈ V ,

0 otherwise.
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Example 1 : homogeneous spaces

Let us denote by

S(V ) the group of permutations of V ,

Aut(P) = {g ∈ S(V ) : ∀x , y ∈ G0,P(g · x , g · y) = P(x , y)}
the group of automorphism of P.

The Markov chain on V with transition kernel P is said
homogeneous if the action of Aut(P) y V is transitive.

Homogeneous MC ! RW on the group of automorphisms

Up to symmetries, they are processes with independent and
stationnary increments

Lyon - September 2017



Introduction
Cut-and-project method

Recurrence/Transience
Asymptotic entropy

Seminal paper, Pólya, 1921
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Example 2 : triangulations of planar surface

x

Figure: Patch of a
triangulation

Theorem (Dodziuk, 1984)

If for some d ≥ 0

7 ≤ deg (x) ≤ d

for all x ∈ V , then the simple
random walk is transient.
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Example 3 : circle packing of the plane

Figure: Circle packing

Theorem

If deg(x) ≤ 6 for all but finitely many points x , then the simple
random walk is recurrent.
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(Undirected) Graphs and random walks
Some examples

Example 3 : Circle packing of the plane

Figure: Circle packing

Theorem

If deg(x) ≤ 6 for all but finitely many points x , then the simple
random walk is recurrent.
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Third Penrose tiling

Figure: Third Penrose tiling

Two prototiles :

a fat rhombus (angles of
measure 2π/5 and 3π/5),

a thin rhombus (angles of
measure π/5 and 4π/5).

together with matching rules

⇓
Aperiodic tiling of R2
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E ′

E

Figure: Linear tiling

Let

Z2 ⊂ R2,

E a vector line with
E ∩ Z2 = {0},
E ′ the orthogonal supplement
of E ,

K the unit cube of Z2

the strip Kt = K + E + t,
t ∈ E ′.

Orthogonal projection of edges entirely contained in the strip
⇓

Aperiodic tiling of E with short and long segments
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Main goal : tile a d-dimensional vector subspace E ⊂ RN

1 ZN ⊂ RN , S = {±εi : 1 ≤ i ≤ N},
2 RN = E ⊕ E ′ avec dim E = d , π and π′ the corresponding

projectors,

3 K = {
∑N

i=1 λiεi : λi ∈ [0, 1], 1 ≤ i ≤ N},

4 Md =

{
I = {i1, · · · , id} ⊂ {1, · · · ,N}

}
,

5 KI = {
∑d

`=1 λi`εi` , λi` ∈ [0, 1], i` ∈ I},
6 KI { denotes the supplementary facet of KI in the unit cube K ,

7 DI = π(KI ) et D ′I = π′(KI {),

8 NDEG assumption : d-dimensional facets of K ∼= DI &
(N − d)-dimensional facets of K ∼= D ′I .
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Theorem (Oguey, Duneau and Katz)

For t ∈ E ′, we set

Tt =

{
x +DI : x = π(ξ), ξ ∈ ZN : π′(ξ+KI ) ⊂ π′(K )+t, I ∈ Md

}

Theorem (Oguey, Duneau, Katz, 1988)

The Tt is a tiling of E ∼= Rd for all t ∈ E ′ generic (or non
ambiguous).

Remarks :
1 Meaning : there exists a unique d-dimensional faceted

manifold entirely contained in the strip Kt (for any generic
t ∈ E ′) ;

2 group of translations of the tiling : E ∩ ZN .
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Examples

Example 1, the third Penrose tiling :
In R5, set E = Span(v1, v2) with

v1 = (1, cos(2π/5),− cos(π/5),− cos(π/5), cos(2π/5))
v2 = (0, sin(2π/5), sin(π/5),− sin(π/5),− sin(2π/5))

Example 2, icosahedral tiling of R3 :
In R6, set E = Im π of dimension 3 with

π =
1

2
√

5
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Theorem

Let N > d ≥ 1. Under assumption NDEG, for almost all t ∈ E ′

non ambiguous, the following estimates holds :

P2n(x , x) ≥ C1[n(log n)]−d/2,

Pn(x , y) ≤ C2n
−d/2,

for some constants C1,C2 > 0.

Corollary

Under the same assumptions, the simple random walk on the
cut-and-project graph is recurrent for d = 1, 2 and transient
otherwise.

Obviously, if d = 1, P2n(x , x) ∼n→∞ C3n
−1/2, this is the simple

random walk on the integers.
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Theorem

Let t = tE + tE ′ ∈ RN = E ⊕ E ′ with dim E = d . Then, under the
assumption NDEG, there exists an almost everywhere positive
function ` on E ′ satisfying

lim
r→∞

card

(
ZN ∩ (t + BRd (0, r) + K )

)
Leb(BRd (0, r))

= `(tE ′), a.e..

This theorem allows to compare the growth rate of balls and
spheres in the cut-and-project graph embedded in E ∼= Rd

with the growth rate of balls and spheres in de Rd .

The Hof’s theorem (1998) suppose in addition that
E ′ ∩ ZN = {0}. In this case, ` is constant and the
convergence is uniform.
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Isoperimetric inequalities

Proposition

Under assumption NDEG, there exists a constant K > 1 such that
for all x ∈ G0

K−1`d ≤ cardBG(x , `) ≤ K`d .

Proposition

Under assumption NDEG, the graph G satisfies a d-dimensional
isoperimetric inequality, i.e. there exists K > 0 such that

cardBG(x , `) ≤ Kcard∂BG(x , `)d/d−1.

uniformly in x ∈ G0.
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Let RN = E ⊕ E ′ with dim E = d < N and E ′ ⊥ E .

For simplicity, assume that E ′ ∩ ZN = {0} and E ∩ ZN = {0}.
Then, π and π′, when restricted to ZN , are injective.

Let t ∈ E ′ be non ambiguous.

Recall the definition of Tt

Tt =

{
x+DI : x = π(ξ), ξ ∈ ZN : π′(ξ+KI ) ⊂ π′(K )+t, I ∈ Md

}
Let ξ ∈ ZN ∩K, then the set of admissible neighbours is
entirely defined through a local rule : π′(ξ) ∼ π′(η) iff

|ξ−η|1 = 1 and ∃η̃, I : ξ, η ∈ η̃+KI and π′(η̃+KI ) ⊂ π′(K )+t
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Forget the cut-and-project method.

The local rule remains and defines a Markov chain Q on
π′(K ) ⊂ E ′.

The distribution of steps is uniform on admissible neighbours.

Each admissible move in π′(K ) corresponds to a move along
exactly one ±εi .
If m(x) denotes the number of admissible neighbours of
x ∈ π′(K ), then

π(dx) = 1π′(K)(x)m(x)λ(dx)

is a finite invariant measure for Q.

Summarizing : estimate the entropy of a Markov additive process
with invariant probability measure and work a little bit to conclude.
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Markov additive processes

Let S be a state space and Q a transition kernel on S. We are
given a family on probability measures (µx ,y )x ,y∈S on ZN .

Definition

A Markov additive process is a Markov chain ((Xn,Zn))n≥0 taking
values in S× ZN whose Markov operator is given by

Rf (x , z) =
∑

y∈S,z ′∈ZN

Q(x , y)µx ,y (z ′)f (y , z + z ′),

for x ∈ S et z , z ′ ∈ ZN and f ∈ `∞(S× ZN).

L(Xn,Zn − Zn−1|(Xn−1,Zn−1)) only depends on Xn−1 ;

R commutes with the translations in ZN .
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The simple case of entropy on groups

Let Γ be finitely generated group, S a symmetric finite set of
generators (semigroup) and µ a probability supported by S.

Let g ∈ Γ and {Xn}n≥1 be an i.i.d. sequence of Γ-valued random
variable, the (right) random walk of law µ is defined as

Zn = gX1 · · ·Xn, n ≥ 1.
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Definition (Shannon entropy)

The Shannon entropy of µ is given by

H(µ) = −
∑
g∈Γ

µ(g) logµ(g).

Definition (Asymptotic entropy)

Denoting by µn the n-fold convolution of µ, the asymptotic
entropy of the µ-random walk on Γ is given by

h = lim
n→∞

H(µn)− H(µn−1) = lim
n→∞

H(µn)

n
.
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Shannon-McMillan-Breiman theorem

For each n ≥ 1, Xn : ΓN∗ 3 ω −→ Xn(ω) = ωn ∈ Γ,

let T be the Bernoulli shift on (ΓN∗ , µN
∗
).

Then, for any n,m ∈ N∗, using Γ-invariance

µn+m(X1 · · ·XnXn+1 · · ·Xm) ≥ µn(X1 · · ·Xn)µm(Xn+1 · · ·Xm)

Thus, ω −→ − logµn(Zn(ω)) is a non negative subadditive cocycle
and Kingmann subadditive theorem implies a SMB type result

lim
n→∞

−1

n
logµn(Zn) = lim

n→∞
1

n
E(− logµn(Zn)) = h a.s..
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Fundamental inequality

Let d be the geodesic metric on (Γ,S) and define (using
Kingmann subadditive theorem again) the escape rate

lim
n→∞

1

n
d(e,Zn) = lim

n→∞
1

n
E[d(e,Zn)] = `, a.s..

The fundamental inequality is an easy consequence of the SMB
theorem :

h ≤ ` · v , with v = lim
n→∞

1

n
log card Bd(e, n).

For ZN , v = 0.
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For Markov additive processes

Substitute the Bernoulli shift by the Markov shift

Adapt the definition of entropy and escape rate to the additive
component

In fact : proved in Kaimanovich, Kiefer, Rubhstein (2004)

Deal with the fact the cut-and-project Markov shift is not ergodic !
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Thank you !
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