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MORSE-HEDLUND THEOREM

Subword complexity P(n):

# of distinct subwords of length n




MORSE-HEDLUND THEOREM

Theorem [Morse, Hedlund 1938]:

a word is non-periodic < Vn:P(n)>n+1
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Theorem: 3dn:P(n)<n <& periodic
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- P(n—=1)=P(n)=n because n—-1<P(n—=1)<P(n)<n



MORSE-HEDLUND THEOREM — PROOF

Theorem: 3dn:P(n)<n <« periodic

Proof.

- Let n be minimal, P(1) < 1is ok
-P(n—=1)=P(n)=n because n—-1<P(n—1)<P(n)<n

- determinism



STURMIAN WORDS

Morse-Hedlund thm: aperiodic < Vn:P(n)>n+1

Sturmian words:  ¥n: P(n) =n+1

Fibonacci word:

-0

- 01

- 010

- 01001

- 01001010

- 0100101001001
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NIVAT'S CONJECTURE

Nivat's Conjecture

- two-dimensional generalization
- by Maurice Nivat, ICALP 1997



SYMBOLIC CONFIGURATIONS

Let A be a finite set.
A d-dimensional configuration: a function Z4 — A

%ﬂ %




DEFINITION OF PERIODICITY

Periodic:
3V € Z? non-zero vector
such that translation by V
preserves the image

periodic —»
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DEFINITION OF PERIODICITY

Periodic:
3V € Z? non-zero vector
such that translation by V
preserves the image

non-periodic —




PATTERN COMPLEXITY

A shape: D ¢ Z9 finite A D-pattern: p € AP

Pattern complexity P(D): # of distinct patterns of shape D
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rectangle complexity P(m, n): H

# of distinct m x n block patterns [ |
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RECTANGLE COMPLEXITY

In 2D,
rectangle complexity P(m, n):

# of distinct m x n block patterns




NIVAT'S CONJECTURE

Nivat's Conjecture [Nivat, 1997]:

a configuration is non-periodic = ¥m,n: P(m,n) > mn+1




NIVAT'S CONJECTURE — PREVIOUS RESULTS

Nivat's Conjecture [Nivat, 1997]:

a configuration is non-periodic = Vm,n:P(m,n) > mn +1

Known results [Van Cyr, Bryna Kra 2013]:

- a configuration is non-periodic = Vm,n:P(m,n) > mn/2

- a configuration is non-periodic = Vm:P(m,3) >3m + 1



OUR RESULT

Nivat’s Conjecture [Nivat, 1997]:

a configuration is non-periodic = ¥m,n:P(m,n) > mn +1

Theorem [K,, S. 2015]:

a configuration is non-periodic

4

for all but finitely many pairs m,n: P(m,n) > mn + 1



NIVAT'S CONJECTURE

Note: Generalization to 3D is false

non-periodic but P(n,n,n) =2n*+1<n?
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Tile: T ¢ Z9 finite.
Conjecture [Lagarias, Wang 1996

Atiling exists = a periodic tiling exists.
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- True if prime size
- True if d = 2 [Bhattacharya 2016]
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COMMON FRAMEWORK

Low complexity condition: There exists a shape D s.t.

P(D) <D

- D is a rectangle m x n for Nivat's conjecture

- D is the tile for periodic tiling problem



THE POLYNOMIAL METHOD
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FORMAL POWER SERIES

Aol

=2

0 loty? 0 @ylaly 0 |ay 0 |23y ?|xty 0

At position (i,j) :  ¢xly/



FORMAL POWER SERIES

a:_5y2+17'4y2 +0 +17_2y2 +0 + y2 + 0+ x2y2+1:3y2 + 0+ x5y2
Y+ 0+ a3y +0+aly +0 + 2 +2%y+ 0 +aty+ 0

0 +2%4+ 0 +22+ 0+ 1 +2 + 0 + 23+ 0 + 2°
x—sy—1+ 0 +.’L'_3y_1+ 0 +$—1y—1 +y—1 + 0 +x2y'1 +0 +:L‘4y'1+x5y'1

0 +a™y2+ 0 +a 2y 2ty 2+ 0 + ay? + 0 + 23y 242y 2+ 0

> Xy

(i.)ez?



FORMAL POWER SERIES

Configuration: formal power series over C

c6y)= Y Xy

(i,j)ez?

integral: coefficients from Z

finitary: finitely many distinct coefficients



FORMAL POWER SERIES

Configuration: formal power series ¢ € C[[X*]]

c(X) =D aX’ NOTATION
vezd

integral: coefficients from Z

finitary: finitely many distinct coefficients



FORMAL POWER SERIES

Configuration: formal power series ¢ € C[[X*]]

) =3 X’

vezd

integral: coefficients from Z

finitary: finitely many distinct coefficients

symbolic configuration «— finitary integral configuration



FORMAL POWER SERIES

Configuration: formal power series over C

Zcxy

(i,))ez?

Question: What happens if ¢(x,y) is multiplied by x2y®?
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FORMAL POWER SERIES

Configuration: formal power series over C S'M?l_
IFigp
X = e’ NoTATIo

Question: What happens if c is multiplied by X4?

Answer: The configuration translates by the vector u!
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FORMAL POWER SERIES

Configuration: formal power series over C

c(X) = Z cwXY

veZzd

Question: What happens if c is multiplied by X4?

Answer: The configuration translates by the vector u!

Observe: Configuration is periodic iff Ju # 0:
Xc=c

& (XM=17)c=0

22



ANNIHILATING LAURENT POLYNOMIALS

Ann(c) = { f(x,y) € Clx=",y="] | f(x,y)c(x,y) =0}

23



ANNIHILATING LAURENT POLYNOMIALS

S'M‘PLlp,ED
Ann(c) = {fe C[x*] | fc=0} NOTATION

- Annihilator ideal: Ann(c)
- Annihilator polynomial: f € C[X] such thatfc =0
- Observe: c is periodic iff for some non-zero u € Z¢

XY —1 € Ann(c)
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SOME RESULTS

Lemma: If exists a shape D such that P(D) < |D|, then Ann(c) # {0}.

Proof. Linear algebra.

Theorem: Let c be a finitary integral configuration with Ann(c) # {0}.
Then 3u,...,u, € Z% non-zero such that

(X" —1)--- (X" —1) € Ann(c).

Proof. Hilbert's nullstellensatz.

Decomposition theorem: Let ¢ be a finitary integral configuration
with Ann(c) # {0}. Then 3cy, ..., ¢y, € C[X*"] periodic such that
C=C+-+cCp

Proof. Corollary of the former.

24



DECOMPOSITION THEOREM

P(3,3,3)=19<3-3-3
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DECOMPOSITION THEOREM

B

i
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THE ANNIHILATOR IDEAL



PRIME DECOMPOSITION OF RADICALS

Let A < C[X] be an ideal.

- VA={feC[X]|3n: " €A}
- Ais a radical ideal if A = VA
- Aisaprimeidealifabe A=acAvbeA

Theorem (Minimal decomposition): Let R be an algebraically closed

field. Every radical ideal A < R[X] can be uniquely written as a finite
intersection of prime ideals A= PN ---N P, where P; ¢ P; for i #j.
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PRIME DECOMPOSITION OF RADICALS

(X +y*=1)

- (4 2xy +y?)

S X=1y=2)

(X 4y —1,X+Y)

<(><2+y = N(x=1),
(O +y> =1y —2))



PRIME DECOMPOSITION OF RADICALS

Theorem. Let A < C[X] be a radical ideal. Then A can be uniquely
written as a finite intersection of prime ideals Py N --- NPy such that

P|¢PJ1COFI7£J



PRIME DECOMPOSITION OF RADICALS

Lemma. Non-zero prime ideals of C[x,y] are:

- () for an irreducible polynomial ¢ € C[x, V]
- maximal ideals (x — a,y — f8)



ANNIHILATOR IDEAL IN 2D

From now on, d = 2.

Theorem: Let c be a 2D configuration. Then Ann(c) is a radical ideal.

Corollary: Let c be a 2D configuration. Then

Ann(c) = p1-- - pH

where ¢; = XY — w; with u; € Z?, w; a root of 1and H an intersection
of maximal ideals.

Proof.

- (XY =1)--- (XU — 1) € Ann(c)
- AN B = AB for comaximal ideals



ANNIHILATOR IDEAL IN 2D

Corollary: Let ¢ be a 2D configuration. Then
ANN(c) = ¢+ G

where ¢; are line polynomials in distinct directions and H an
intersection of maximal ideals.
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ANNIHILATOR IDEAL IN 2D

Corollary: Let ¢ be a 2D configuration. Then

Ann(c) = ¢1- - pmH

where ¢; are line polynomials in distinct directions and H an
intersection of maximal ideals.

Definition: ord(c) = m
Lemma:

- ord(c) = 0 iff c is doubly periodic
- ord(c) = 1iff cis one-way periodic
- ord(c) > 2 iff c is non-periodic
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APPLICATIONS

T-shape:

Lemma: If P(D) < |D| for a T-shape D, then c is periodic.
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APPLICATIONS

Lemma: Periodic tiling problem holds for |T| = 4.
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QUESTIONS?
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