PATTERN COMPLEXITY ON THE EDGE BETWEEN PERIODICITY AND APERIODICITY

Jarkko Kari, Michal Szabados Lyon, September 25, 2017

University of Turku, Finland

MORSE-HEDLUND THEOREM - DEFINITIONS

Bi-infinite word: a function $\mathbb{Z} \to \mathcal{A}$

Subword complexity P(n):

of distinct subwords of length n

MORSE-HEDLUND THEOREM - DEFINITIONS

Bi-infinite word: a function $\mathbb{Z} \to \mathcal{A}$

Subword complexity P(n):

of distinct subwords of length n

$$P(1) = 2$$
 $P(2) = 3$
 $P(3) = 4$
 $P(4) = 5$
 $P(5) = 5$
 $P(6) = 5$
 $P(7) = 5$
...

MORSE-HEDLUND THEOREM - DEFINITIONS

Bi-infinite word: a function $\mathbb{Z} \to \mathcal{A}$

Subword complexity P(n):

of distinct subwords of length n

$$P(1) = 2$$
 $P(2) = 3$
 $P(3) = 4$
 $P(4) = 5$
 $P(5) = 5$
 $P(6) = 5$
 $P(7) = 5$
...

MORSE-HEDLUND THEOREM

Subword complexity P(n):

of distinct subwords of length n

$$P(n) = n+1$$

MORSE-HEDLUND THEOREM

Theorem [Morse, Hedlund 1938]:

a word is non-periodic
$$\Leftrightarrow \forall n : P(n) \ge n+1$$

$$P(1) = 2$$
 $P(2) = 3$ $P(3) = 4$ $5 = P(4) = P(5) = P(6) = ...$

$$P(n) = n+1$$

Proof.

· Let n be minimal, $P(1) \le 1$ is ok

Proof.

- · Let n be minimal, $P(1) \le 1$ is ok
- P(n-1) = P(n) = n because $n-1 < P(n-1) \le P(n) \le n$

Theorem:
$$\exists n : P(n) \le n \Leftrightarrow periodic$$

Proof.

- · Let n be minimal, $P(1) \le 1$ is ok
- P(n-1) = P(n) = n because $n-1 < P(n-1) \le P(n) \le n$
- · determinism

STURMIAN WORDS

Morse-Hedlund thm: aperiodic \Leftrightarrow $\forall n : P(n) \ge n + 1$

Sturmian words: $\forall n : P(n) = n + 1$

Fibonacci word:

- . 0
- · 01
- · 010
- · 01001
- · 01001010
- · 0100101001001

٠ ...

NIVAT'S CONJECTURE

NIVAT'S CONJECTURE

Nivat's Conjecture

- \cdot two-dimensional generalization
- · by Maurice Nivat, ICALP 1997

SYMBOLIC CONFIGURATIONS

Let A be a finite set.

A d-dimensional configuration: a function $\mathbb{Z}^d \to \mathcal{A}$

DEFINITION OF PERIODICITY

Periodic:

 $\exists \vec{v} \in \mathbb{Z}^2$ non-zero vector such that translation by \vec{v} preserves the image

DEFINITION OF PERIODICITY

Periodic:

 $\exists \vec{v} \in \mathbb{Z}^2$ non-zero vector such that translation by \vec{v} preserves the image

periodic \rightarrow

DEFINITION OF PERIODICITY

Periodic:

 $\exists \vec{v} \in \mathbb{Z}^2$ non-zero vector such that translation by \vec{v} preserves the image

non-periodic \longrightarrow

PATTERN COMPLEXITY

A D-pattern: $p \in \mathcal{A}^D$

Pattern complexity P(D): # of distinct patterns of shape D

In 2D, rectangle complexity P(m, n):
of distinct $m \times n$ block patterns

$$P(4,3) = 5$$

In 2D, rectangle complexity P(m, n):

 $\text{\# of distinct m} \times \text{n block patterns}$

$$P(4,3) = 4$$

 $P(m,n) = n+1$

In 2D, rectangle complexity P(m, n): # of distinct $m \times n$ block patterns

P(4,3) = ?

In 2D, rectangle complexity P(m, n):

of distinct $m\times n$ block patterns

$$P(4,3) = 13$$

 $P(m,n) = mn+1$

NIVAT'S CONJECTURE

Nivat's Conjecture [Nivat, 1997]:

a configuration is non-periodic $\Rightarrow \forall m, n \colon P(m, n) \ge mn + 1$

NIVAT'S CONJECTURE - PREVIOUS RESULTS

Nivat's Conjecture [Nivat, 1997]:

a configuration is non-periodic
$$\Rightarrow \forall m, n : P(m, n) \ge mn + 1$$

Known results [Van Cyr, Bryna Kra 2013]:

- · a configuration is non-periodic $\Rightarrow \forall m, n : P(m, n) > mn/2$
- · a configuration is non-periodic \Rightarrow $\forall m : P(m,3) \ge 3m + 1$

OUR RESULT

Nivat's Conjecture [Nivat, 1997]:

a configuration is non-periodic
$$\Rightarrow \forall m, n : P(m, n) \ge mn + 1$$

Theorem [K., S. 2015]:

a configuration is non-periodic

for all but finitely many pairs m,n: $P(m, n) \ge mn + 1$

NIVAT'S CONJECTURE

Note: Generalization to 3D is false

$$\mbox{non-periodic but} \ \ P(n,n,n) = 2n^2 + 1 \ll n^3$$

PERIODIC TILING PROBLEM

Tile: $T \subset \mathbb{Z}^d$ finite.

Conjecture [Lagarias, Wang 1996]:

A tiling exists \Rightarrow a periodic tiling exists.

Tile: $T \subset \mathbb{Z}^d$ finite.

Conjecture [Lagarias, Wang 1996]:

- · True if prime size
- True if d = 2 [Bhattacharya 2016]

Tile: $T \subset \mathbb{Z}^d$ finite.

Conjecture [Lagarias, Wang 1996]:

Tile: $T \subset \mathbb{Z}^d$ finite.

Conjecture [Lagarias, Wang 1996]:

Tile: $T \subset \mathbb{Z}^d$ finite.

Conjecture [Lagarias, Wang 1996]:

Tile: $T \subset \mathbb{Z}^d$ finite.

Conjecture [Lagarias, Wang 1996]:

COMMON FRAMEWORK

Low complexity condition: There exists a shape D s.t.

$$\mathsf{P}(\mathsf{D}) \leq |\mathsf{D}|$$

- · D is a rectangle m × n for Nivat's conjecture
- \cdot D is the tile for periodic tiling problem

At position (i, j): $c_{ij}x^iy^j$

$$\sum_{(i,j)\in\mathbb{Z}^2}c_{ij}x^iy^j$$

Configuration: formal power series over $\mathbb C$

$$c(x,y) = \sum_{(i,j) \in \mathbb{Z}^2} c_{ij} x^i y^j$$

integral: coefficients from \mathbb{Z}

finitary: finitely many distinct coefficients

Configuration: formal power series $c \in \mathbb{C}[[X^{\pm 1}]]$

$$c(X) = \sum_{v \in \mathbb{Z}^d} c_v X^v$$

SIMPLIFIED NOTATION

integral: coefficients from $\mathbb Z$

finitary: finitely many distinct coefficients

Configuration: formal power series $c \in \mathbb{C}[[X^{\pm 1}]]$

$$c(X) = \sum_{v \in \mathbb{Z}^d} c_v X^v$$

integral: coefficients from \mathbb{Z}

finitary: finitely many distinct coefficients

symbolic configuration \longleftrightarrow finitary integral configuration

21

Configuration: formal power series over $\mathbb C$

$$c(x,y) = \sum_{(i,j) \in \mathbb{Z}^2} c_{ij} x^i y^j$$

Question: What happens if c(x, y) is multiplied by x^ay^b ?

Configuration: formal power series over $\mathbb C$

$$c(X) = \sum_{v \in \mathbb{Z}^d} c_v X^v$$

SIMPLIFIED NOTATION

Question: What happens if c is multiplied by X^u?

Answer: The configuration translates by the vector **u**!

Configuration: formal power series over $\mathbb C$

$$c(X) = \sum_{v \in \mathbb{Z}^d} c_v X^v$$

Question: What happens if c is multiplied by X^u?

Answer: The configuration translates by the vector u!

Observe: Configuration is periodic iff $\exists u \neq 0$:

$$X^{u}c=c$$

$$\Leftrightarrow$$
 $(X^u - 1)c = 0$

ANNIHILATING LAURENT POLYNOMIALS

$$\text{Ann}(c) = \left\{ \, f(x,y) \in \mathbb{C}[x^{\pm 1},y^{\pm 1}] \mid f(x,y)c(x,y) = 0 \, \right\}$$

ANNIHILATING LAURENT POLYNOMIALS

$$Ann(c) = \left\{ f \in \mathbb{C}[X^{\pm 1}] \mid fc = 0 \right\}$$

SIMPLIFIEN NOTATION

- · Annihilator ideal: Ann(c)
- Annihilator polynomial: $f \in \mathbb{C}[X]$ such that fc = 0
- · Observe: c is periodic iff for some non-zero $u \in \mathbb{Z}^d$

$$X^{u} - 1 \in Ann(c)$$

SOME RESULTS

Lemma: If exists a shape D such that $P(D) \le |D|$, then $Ann(c) \ne \{0\}$. Proof. Linear algebra.

Theorem: Let c be a finitary integral configuration with Ann(c) \neq {0}. Then $\exists u_1, \ldots, u_n \in \mathbb{Z}^d$ non-zero such that

$$(X^{u_1}-1)\cdots(X^{u_n}-1)\in Ann(c).$$

Proof. Hilbert's nullstellensatz.

Decomposition theorem: Let c be a finitary integral configuration with Ann(c) \neq {0}. Then $\exists c_1, \ldots, c_n \in \mathbb{C}[X^{\pm 1}]$ periodic such that $c = c_1 + \cdots + c_n$.

Proof. Corollary of the former.

DECOMPOSITION THEOREM

$$P(3,3,3) = 19 \le 3 \cdot 3 \cdot 3$$

DECOMPOSITION THEOREM

$$c=c_3-c_1-c_2$$

$$c_1(i,j)=\lfloor i\alpha\rfloor, \quad c_2(i,j)=\lfloor j\alpha\rfloor, \quad c_3(i,j)=\lfloor (i+j)\alpha\rfloor$$

DECOMPOSITION THEOREM

$$\begin{split} c &= c_3 - c_1 - c_2 \\ c_1(i,j) &= \lfloor i\alpha \rfloor, \quad c_2(i,j) = \lfloor j\alpha \rfloor, \quad c_3(i,j) = \lfloor (i+j)\alpha \rfloor \end{split}$$

Let $A \leq \mathbb{C}[X]$ be an ideal.

- $\cdot \ \sqrt{A} = \{\, f \in \mathbb{C}[X] \mid \exists n \colon f^n \in A \,\}$
- · A is a radical ideal if $A = \sqrt{A}$
- · A is a prime ideal if $ab \in A \Rightarrow a \in A \lor b \in A$

Theorem (Minimal decomposition): Let R be an algebraically closed field. Every radical ideal $A \leq R[X]$ can be uniquely written as a finite intersection of prime ideals $A = P_1 \cap \cdots \cap P_k$ where $P_i \not\subset P_j$ for $i \neq j$.

$$\langle x^2 + y^2 - 1 \rangle$$
$$\langle x^2 + 2xy + y^2 \rangle$$

$$\cdot \langle x-1,y-2 \rangle$$

$$\cdot \ \langle x^2+y^2-1, x+y \rangle$$

·
$$\langle (x^2 + y^2 - 1)(x - 1), (x^2 + y^2 - 1)(y - 2) \rangle$$

Theorem. Let $A \leq \mathbb{C}[X]$ be a radical ideal. Then A can be uniquely written as a finite intersection of prime ideals $P_1 \cap \cdots \cap P_k$ such that $P_i \not\subset P_j$ for $i \neq j$.

$$\cdot \langle x^2 + y^2 - 1 \rangle$$

$$\cdot \ \langle x^2 + 2xy + y^2 \rangle$$

$$\cdot \langle x-1, y-2 \rangle$$

$$\cdot \langle x^2 + y^2 - 1, x + y \rangle$$

·
$$\langle (x^2 + y^2 - 1)(x - 1), (x^2 + y^2 - 1)(y - 2) \rangle$$

Lemma. Non-zero prime ideals of $\mathbb{C}[x, y]$ are:

- $\cdot \ \langle \varphi \rangle$ for an irreducible polynomial $\phi \in \mathbb{C}[\mathbf{x},\mathbf{y}]$
- · maximal ideals $\langle x \alpha, y \beta \rangle$

ANNIHILATOR IDEAL IN 2D

From now on, d = 2.

Theorem: Let c be a 2D configuration. Then Ann(c) is a radical ideal.

Corollary: Let c be a 2D configuration. Then

$$Ann(c) = \varphi_1 \cdots \varphi_k H$$

where $\varphi_i = X^{\mathbf{u}_i} - \omega_i$ with $\mathbf{u}_i \in \mathbb{Z}^2$, ω_i a root of 1 and H an intersection of maximal ideals.

Proof.

- $\cdot \ (X^{u_1}-1)\cdots (X^{u_n}-1) \in \mathsf{Ann}(c)$
- $\cdot A \cap B = AB$ for comaximal ideals

ANNIHILATOR IDEAL IN 2D

Corollary: Let c be a 2D configuration. Then

$$Ann(c) = \phi_1 \cdots \phi_m H$$

where $\phi_{\rm i}$ are line polynomials in distinct directions and H an intersection of maximal ideals.

ANNIHILATOR IDEAL IN 2D

Corollary: Let c be a 2D configuration. Then

$$Ann(c) = \phi_1 \cdots \phi_m H$$

where ϕ_i are line polynomials in distinct directions and H an intersection of maximal ideals.

Definition: ord(c) = m

Lemma:

- · ord(c) = 0 iff c is doubly periodic
- · ord(c) = 1 iff c is one-way periodic
- · ord(c) \geq 2 iff c is non-periodic

APPLICATIONS

T-shape:

Lemma: If $P(D) \le |D|$ for a T-shape D, then c is periodic.

APPLICATIONS

Lemma: Periodic tiling problem holds for |T| = 4.

